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In modern mechanical and aviation industries, gas turbine engines are essential components. However, due to 
the intricacy of their nature and functioning, they need to be completely monitored to prevent unanticipated 
damages and operational faults. The goal of this study is to provide a viable diagnostic approach, estimation 
of compressor faults in a gas turbine electric generator. An improved frame work for the diagnosis and 
estimation of fault in a gas turbine was proposed using an extended kalman filter algorithm. The extended 
kalman filter utilizes data collected over time that contains noise (random variations) and other errors to 
provide values that are often closer to the actual condition of the system as it pertains to achieving a specific 
objective. The proposed fault diagnosis framework developed show a 99.85% accurate fault estimation and 
early detection of compressor faults in a gas turbine electric generator. 
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Introduction 

The process of finding faults in physical systems while attempting to locate the root of the problem is known as fault 
detection and diagnostics (FDD). The diagnosis procedure starts by detecting the variations from the normal 
characteristics of a given system, whose aim is to identify the cause of the failure and find all sources of the 
unexpected occurrence (Marzat, Piet-Lahanier, Damongeot, and Walter, 2012) 

Based on the data that are currently available for the system, the major goal of fault diagnosis is to identify the kind, 
size, and location of the fault as well as the time at which it was discovered. Figure 1 depicts a generic block 
description of model-based fault diagnostics. 
 

 

Figure 1: General scheme of model-based fault diagnosis (Alexandros, 2013). 

Fault diagnosis is often accomplished in two steps. First, a signal termed residual is generated utilizing relevant 
input/output metrics from the system under review. If there is no defect in the system, the residual signal should be 
zero or nearly zero; if there is a failure, the residual signal should be different from zero. Residual can be either 
vector providing information about several faults or scalar signal carrying information about a single failure. The type 
of the residual generator might range from a black-box system model to an analytical mathematical model (Marzat, 
Piet-Lahanier, Damongeot, and Walter, 2012). 

The decision-making process, which takes place in the second step, involves assessing the possibility of faults in the 
residuals. The kind of decision-making process might range from a simple threshold to several complex statistical 
methods. A diagnostic control system often has two goals: 

1. Under normal circumstances, it must ensure the best operating point in relation to changes in the load 
supplied. 

2. Under fault conditions, it must locate the fault to isolate the faulty line and reduce possible system failures.  

Once the fault is located and identified, the control system can decide all the actions that are required to optimize 
the subsequent system’s operation 

Fault diagnosis methods are broadly classified into three main categories (Marzat, Piet-Lahanier, Damongeot, and 
Walter, 2012). 

i. model-based, 
ii. hardware-based and 

iii. History-based. 

Model-Based Fault Diagnosis 

Model-based FDD is the process of identifying and diagnosing problems in a system using techniques that extract 
features from signals that are already accessible (from known measurements and inputs) and the mathematical 
model of the process (Alexandros, 2013).  Model-based FDD is also called analytical redundancy. Model-based fault 
diagnostic techniques often employ models created using some basic knowledge of the physics of the plant or 
process (Marzat, Piet-Lahanier, Damongeot, and Walter, 2012). 
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Faults are identified by applying pre-set or adjustable thresholds on residuals derived from the variation between 
actual measurements and their estimates obtained by using the process model. A number of residuals can be 
generated each being sensitive to certain faults occurring in various locations of the system (Shen, Jiang, and Shi 
2017). The analysis of each residual, once the threshold is exceeded, leads to fault diagnosis. Figure 2 shows the 
general block diagram of a model-based FDD. The two main blocks are described as residual generation and residual 
evaluation blocks. 

 

Figure 2: Structure of a model-based FDD system (Marzat, Piet-Lahanier, Damongeot, and Walter2012). 

Hardware-Based Fault Diagnosis 
Hardware-based fault diagnosis methods do not deploy a mathematical model of the physics of the plant or process. 
In general, hardware-based fault diagnosis methods are generally categorized into voting techniques, hardware 
redundancy, special hardware, frequency analysis, and limit checking (Alexandros, 2013). 

 
History-Based Fault Diagnosis 

In history-based fault diagnostic methods, a model developed from known and observed input and output process 
data is used instead of a mathematical model of the physics of the plant or process (Shen, Jiang and Shi, 2017). 
Creating a model of the process that mathematically connects measured inputs to measured outputs is the primary 
ideal of history-based fault diagnostics. Since these strategies are data-driven, the significant impact of these 
strategies is highly dependent on the quantity and quality of the process data (Andrea, Alessandro, and Sauro, 2020). 

Operations of Gas Turbine 

One of the most versatile components of turbo engines available today is the gas turbine. It is employed in a variety 
of ways in vital sectors including aviation, oil and gas, power generation, and smaller related industries. The 
performance of the gas turbines is a complicated phenomenon and there are some parameters that cannot be 
measured directly and can only be estimated due to excessive heat generated in the system (Bijay, 2018). 
Mathematical models are prepared to represents the actual gas turbine systems and to estimate certain parameters 
which cannot be measured directly due to various constraints. Figure 3 represents a schematic of an open turbine 
gas cycle. 
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Figure 3: Open Turbine Gas Cycle 

The open turbine gas cycle operates as follows: 

1. Air at room pressure and temperature is compressed to a high pressure in the turbo compressor. 
2. Fuel is added in the combustion chamber where combustion takes place resulting in high-temperature 

combusted gases. 
3. The hot gases expand in the turbine back to the atmospheric pressure producing mechanical power. 

The cycle is considered to be open because fresh air is continually pumped into the compressor and exhaust gas is 
released, but thermodynamically it appears as though the operating fluid returns to its starting condition. Part of 
the mechanical power produced by the turbine is utilized to drive the compressor (Bijay, 2018). 

When diagnosing a failure in a gas turbine engine, the first step is to determine the precise state of the sensor and 
actuator system components (Alexandros, 2013). An early and precise diagnosis directly influences the availability 
of machines for operation and maintenance. The need of early detection of faults cannot be overlooked, as the 
presence of faults in the plants may result in significant losses in terms of equipment and human resources 
(Benyounes, Hafaifa, and Guemana. 2016). 

Mathematical Model of a Gas Turbine Electric Generator 

Figure 4 represents the block components of an industrial gas turbine engine and their thermodynamic interactions. 
 

 

   Figure 4: Block description of an Industrial Gas Turbine Engine 
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From figure 4, the complete mathematical model of a gas turbine electric generator can be obtained as shown in 
equation 1. 
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Applying equation 1 the complete Matlab/Simulink model for the healthy state of a gas turbine electric generator is 
developed as a shown in figure 5. 

 

Figure 5: Simulink Model of an industrial Gas Turbine 

Fault Detection Algorithm  

The propose fault detection and diagnosis framework involve the use of an extended kalman filter for fault 
estimation and reference signal tracking. The kalman filter is a set of mathematical equations that provides an 
efficient computational means to estimate the state of a process, in a way that minimizes the mean of the squared 
error. Kalman filter is also used for predicting the likely future courses of dynamic systems that people are not likely 
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to control. It has become a universal tool for integrating different sensor and data collection systems into an overall 
optimal solution (Armando, Malek, Francisco, and Nonnarit, 2021). Figure 6, illustrates a typical application of 
Kalman Filter. 

 

Figure 6: Typical application of the Kalman Filter 

Figure 6 represents a physical system that is driven by a set of external inputs or controls and its outputs are 
evaluated by measuring devices or sensors. In this physical system, the knowledge on the system’s behaviour is 
solely given by the inputs and the observed outputs. 

 The observations convey the errors and uncertainties in the process, namely the sensor noise and the system errors. 
Based on the available information (control inputs and observations) it is required to obtain an estimate of the 
system’s state that optimizes a given criteria. This same principle will be applied to the gas turbine electric generator. 
The general form of an extended kalman filter for nonlinear systems is given in equation 4. The general filter problem 
for a complex nonlinear dynamic system may be formulated below (Armando, Malek, Francisco, and Nonnarit, 2021). 

𝑥𝑥(𝑘𝑘 + 1) = 𝑓𝑓(𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘),𝑤𝑤(𝑘𝑘))                                                 (2) 
𝑦𝑦(𝑘𝑘) = ℎ(𝑥𝑥(𝑘𝑘), 𝑣𝑣(𝑘𝑘))                                                                    (3) 

Equation 2 and equation 3 represent the state dynamics of a general non-linear time-varying system, where; 

𝑥𝑥(𝑘𝑘 + 1) = The (𝑘𝑘 + 1)th component of the vector 𝑥𝑥  
𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 is the system state vector, 
𝑓𝑓(. , . , . ) defines the system’s dynamics, 
𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚  is the control vector, 
𝑤𝑤 is the vector that conveys the system error sources (Process noise vector),  
𝑦𝑦 ∈ 𝑅𝑅𝑟𝑟  is the observation vector, 
𝑦𝑦 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 measurement  vector  
ℎ(. , . , . ) is the measurement function or the measurement sensitivity,   
𝑢𝑢  is the control input vector 
𝑣𝑣  is the vector that represents the measurement error sources (measurement noise vector)The EKF for the 
fault estimation of compressor temperature (Tc) and compressor mass flow rate (mc) is given as; 
𝑇𝑇𝐶𝐶(𝑘𝑘+1) = 𝑓𝑓(𝑇𝑇𝐶𝐶(𝐾𝐾),𝑢𝑢(𝑘𝑘),𝑤𝑤(𝑘𝑘))                                                 (4) 
𝑚𝑚𝐶𝐶(𝑘𝑘+1) = 𝑓𝑓(𝑚𝑚𝐶𝐶(𝐾𝐾),𝑢𝑢(𝑘𝑘),𝑤𝑤(𝑘𝑘))                                              (5) 

The proposed algorithm for the   fault estimation and diagnosis of compressor fault is given as follows:  

1. Initialize state transition Matrix (,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝑄𝑄) 
2. Initialize Process noise (w(k)) and Observation noise(v(k)) 
3. Initialize 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝑢𝑢(0)� 
4. Initialize 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑋𝑋𝑘𝑘) 
5. Compute Previous Estimate of  𝑋𝑋𝑘𝑘(𝑋𝑋𝐾𝐾−1)   
6. Compute the primary estimation at the current time step of 𝑋𝑋𝑘𝑘�𝑋𝑋𝑘𝑘−𝑝𝑝𝑝𝑝𝑝𝑝� 
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7. Calculate  kalman Gain (𝐾𝐾𝑔𝑔)  (𝑋𝑋𝑘𝑘−𝑝𝑝𝑝𝑝𝑝𝑝*C'*(C*𝑋𝑋𝑘𝑘−𝑝𝑝𝑝𝑝𝑝𝑝*C'+ w(k)))^(-1) ) 
8. Compute  current observable system output  𝑈𝑈𝑈𝑈−𝑜𝑜𝑜𝑜𝑜𝑜 
9. Calculate the  predicted  system  output value of Xk (𝑈𝑈𝑈𝑈−𝑃𝑃𝑃𝑃𝑃𝑃) 
10. Compute  (𝑈𝑈𝑈𝑈−𝑜𝑜𝑜𝑜𝑜𝑜 −  𝑈𝑈𝑈𝑈−𝑃𝑃𝑃𝑃𝑃𝑃) 
11. Computer the update (X_upd = X_pre + 𝐾𝐾𝑔𝑔*(UL_obs-UL_pre)) 
12. Obtain (𝑋𝑋𝑘𝑘) Estimate 
13. Output (𝑋𝑋𝑘𝑘,) predicted 

To estimate the fault in the compressor of the gas turbine model using the developed algorithm, the compressor 
model is further decomposed into various blocks as shown in figure 7. 

 

Figure 7: Compressor Block Decomposition 

In figure 7 the input to the compressor model are the compressor pressure (Pc) and the inlet temperature (Td). 
Changes in both parameters affect the compressor mass flow rate and the compressor temperature. Also, when 
fault is introduced to the system it results in decrease in the compressor mass flow rate capacity (Fmc), decrease in 
the compressor efficiency (Fec) resulting in abnormal rise in temperature. Using kalman filter in the system enables 
quick detection and estimation of fault conditions before they occur.  

Figure 8 represents the compressor model of the gas turbine with the operation of the proposes algorithm. The 
script for the algorithm was done in MATLAB.  

 

Figure 8: Simulink model of compressor fault estimation and diagnosis in using Extended kalman filter 
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Simulation Results 

Fault modelling parameters, which represent the faulty behaviour in the gas turbine, was introduced in the 
simulation in other to ascertain the performance of the fault estimation and diagnosis model. Comparison and 
results of fault diagnosis and estimation were conducted during the simulation, the following fault scenarios were 
observed: 

i. Fault Estimation and diagnosis in mass flow rate of the compressor (mc). 
ii. Fault Estimation and diagnosis in Changes in Compressor Pressure (Pc) 

Fault Estimation and Diagnosis in Mass Flow Rate of the Compressor (Mc) 

The fault observed, during simulation shows an increase in compressor pressure (Pc) and compressor temperature 
(Tc) as shown in figure 9 and figure 10 

 

 
Figure 9: Changes in Compressor Pressure as a result of Component Fault 
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Figure 10: Changes in Compressor inlet Temperature (TC) as a result of Sensor Fault 

The fault observed in the compressor section of the gas turbine, could present itself as a component fault, for 
example a leakage in a valve, reduction in tip clearance as a result of dust or eroded or broken compressor blades 
which may lead to abnormal decrease or rise in compressor pressure or inlet temperature and decrease in 
compressor mass flow. 

Figure 11 represent comparison of a fault estimation and diagnosis in the compressor model.  

 
 Figure 11: Comparison of kalman filter fault Estimation with that of the ILC algorithm. 
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The air mass flow rate in the compressor chamber is required to be constant for efficient combustion process and 
adequate turbine mechanical power generated.  In figure 11, a constant air mass flow rate of 0.057Kg/s was observed 
from 0second to 4 seconds until fault was observed in the system at 4 seconds of the simulation le ding to decrease 
in air mass flow rate in the compressor.  A decrease to about 0.005Kg/s   was recorded during the fault conditions. 
The extended kalman filter developed was able to estimate and diagnose the fault at 4 seconds till the end of the 
simulation. The ILC algorithm shows a large deviation from the fault signal recorded. A negligible 0.15% percent was 
obtained as the Percentage deviation, showing an accuracy of reference tracking of 99.85% (100-0.15) using the 
kalman filter model. 

Fault Estimation and diagnosis in Compressor Pressure (Pc) 

Figure 12 represents the changes in compressor pressure as a result of fault. 

 

Figure 12: Changes in compressor pressure during component fault condition 

The proposed kalman filter algorithm was able to provide early estimate and diagnose the fault and provided a close-
range reference tracking by monitoring the actual signal with that of the predicted signal. Compensation is provided 
by the kalman gain to ensure that the reference signal is closely track and fault is diagnosed on time and accurately. 
Also, the ILC algorithm also provided reference tracking for the compressor pressure and fault estimation. The ILC 
had a large deviation from the reference signal during the period when fault occur in the system. 

Conclusion 

An improved frame work for the diagnosis and estimation of fault in a gas turbine was developed using an extended 
kalman filter. The algorithm for the extended kalman filter was developed using Matlab script. Also, the proposed 
kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to 
estimate the state of a process, in a way that minimizes the mean of the squared error.  

Various fault scenarios were investigated and the results obtained showed the effectiveness of the proposed method 
in terms of both rapid fault detection and fault diagnosis. The extended kalman filter framework provided the 
following improvement: On the increase in accuracy of fault estimation and diagnosis of compressor mass flow rate 
to 99.85%. 
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