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Abstract 

The availability of consistent, reasonably priced, and efficient power is a key determinant for the development 
and sustainability of every society's economy. However, the distribution grid is affected by persistent voltage 
collapse and power losses. Power losses are caused by various challenges, including reactive power burden, 
unbalanced loading, and harmonic distortions due to non-linear loads and technical inefficiency. This study 
uses metaheuristic method, a simple yet effective optimization solution to determine the optimal sizing and 
placement locations of reactive power compensators (RPC) for voltage optimization and power loss reduction 
in the distribution grid. It also examined the power distribution network in southeast Nigeria, while the scope 
covered the New Haven 33kV/11kV distribution grid, modelled with 40 buses, 43 branches, and 26 loads. The 
study demonstrated average losses of 40.3% (comprising 3.1% active and 37.2% reactive) at the buses, with 
branch losses accounting for 2.5% active and 3.8% reactive losses, and transformers contributing significantly 
with 19.7% active and 89.8% reactive power losses. Implementation of Reactive Power Compensators (RPCs) 
resulted in a voltage improvement of 5.43% for 11 kV and 3.16% for 33 kV, along with an enhanced power 
factor from 89.19% to 99.15%. This optimization increased the system's maximum loading capacity from 73.54 
MW to 103.44 MW and reduced the reactive power burden from 37.29 Mvar to 13.55 Mvar. The cost-benefit 
analysis indicates potential annual cost savings of approximately $1,933,500 (over 773.4 million naira at 
$/N400) within the proposed 5-year planning period, with a payback period of less than 11 months. 
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Introduction 

The distribution grid is exposed to reactive power burden, unbalanced loading, voltage collapse, harmonic 
distortions, and losses due to non-linear loads and technical inefficiencies. Voltage variations are typically caused by 
an inadequate reactive power supply from generation to the load side. Besides, due to long radial feeders especially 
in rural areas, the transmission of reactive power from supply to end users may be impossible, Stanelyte & 
Radziukynas (2020). This significantly leads to a high voltage drop at the end users.  

Excessively low voltages on buses could lead to poor service quality, unstable voltage, and power losses, Kavitha & 
Neela (2018). This is because modern electrical equipment is designed to operate within specific voltage ranges and 
tolerance to fluctuations. Voltage collapses when reactive power is reduced, and rises when reactive power is 
increased, (Parmar, 2011). Voltage collapse happens when there is an increase in load or a decrease in power 
generation – this further reduces reactive power from the capacitor and line charging. If the problem persists, 
voltage reduction will cause an increase in current and losses in the distribution system accordingly.  

The consequences are presumably higher in developing countries like Nigeria, as the distribution systems experience 
increased current and losses due to voltage regulation problems. For instance, in southeast Nigeria, the technical 
report shows a reliability index of 664 cases per year, i.e., voltage collapse occurs in the network approximately twice 
daily (EEDC, 2021). Moreover, the southeast region imports an average of 180 million units (kWh) per month, where 
over 66 million units are lost to technical inefficiencies (EEDC, 2022). These losses are technical, amounting to over 
3.5 billion naira ($7.6 million), monthly, and do not include the commercial and collection losses in the sector, and 
they affect the performance of the distribution company and its customers who suffer higher tariffs without a 
reliable power quality. Therefore, the distribution sector, both the 33kV/11kV and 415V, i.e., medium voltage (MV) 
and low voltage (LV) levels, arguably, experience more technical losses in the electricity business value chain.  

These power system issues are classical cases of non-linear, multi-modal, and multi-objective problems that require 
metaheuristic optimization techniques for the optimal sizing and placement of reactive power compensation (RPC) 
devices. Other techniques such as the analytical and conventional have many constraints. Power system 
optimization problems could be solved with evolutionary algorithms (Biswas, 2019). 

Literature Review 

Optimal Location and Sizing Techniques 

There are several reactive power compensation (RPC) techniques, which can be grouped into four categories: 
analytical-based approach, conventional-based approach, metaheuristic-based approach, and hybrid-based 
approach (analytical-metaheuristic, conventional-metaheuristic, and metaheuristic-metaheuristic). The analytical 
approach or sensitive-based approach could provide an optimal or near-optimal global solution but lacks 
computation accuracy in dealing with both optimal location and sizing simultaneously. It requires extensive 
computational burden and storage to provide high calculation precision, Ismail et al. (2020). 

In traditional or conventional optimization techniques like linear programming, non-linear programming, dynamic 
programming, sequential quadratic programming (SQL), and Newton Raphson (NR), there is no guarantee that the 
final solution obtained will be globally optimal because they depend on the value of initial randomly chosen 
parameters. In addition, traditional optimization techniques are incompetent to solve the multi-objective 
nonlinear problem and have more chances to trap into local optimum, hence, metaheuristic algorithms were 
introduced to compensate f o r  these problems (Rajpurohit et al., 2017). 

Metaheuristic Optimization 

In today’s world, metaheuristics are mostly preferred above other optimization algorithms, because they are more 
adaptable than precise techniques in two key aspects. Firstly, since metaheuristic frameworks are defined broadly, 
the algorithms can fit into the requirements of most real-world optimization problems in terms of expected solution 
quality and computing time (Kizielewicz & Sałabun, 2020). Secondly, there are no requirements placed on the 
formulation of the optimization problem by metaheuristics, like requiring constraints or objective functions to be 
expressed as linear functions of the decision variables, (Abhishek et al., 2022). The trade-off for this flexibility is that 

https://doi.org/10.5281/zenodo.8416196


American Journal of Applied Sciences and Engineering | AJASE 
Volume 4, Number 3 | 2023 | 1-17 | DOI: https://doi.org/10.5281/zenodo.8416196 

IFO & EKE, 2023  
3 

it necessitates significant problem-specific customization to attain high performance. Another advantage of many 
metaheuristics is that they can be used in conjunction with more rigorous methods through a process that we might 
call “hybridization” thus improving their performance when needed (Chopard & Tomassini, 2018). Amongst the 
proven metaheuristic algorithms for solving reactive power optimization problems, is the Genetic algorithm (GA). 

Review of Related Literature 

There are several related works, including Moghadam et al. (2020) which used a non-dominated sorting genetic 
algorithm (NSGA-II) technique, and Saddiquea et al. (2020) which used a hybrid of conventional approach and 
metaheuristic technique, all agree that metaheuristics are very effective when dealing with a multimodal, multi-
objective, and discrete system, such as in sizing and placement of various FACTS device types in power systems. 
According to Ahmad & Sirjani (2020), the use of analytical methods or traditional optimization approaches combined 
with metaheuristic optimization techniques significantly reduces the search space for the proposed meta-heuristic 
optimization technique. Arithmetic programming approaches are frequently ineffective in managing constrained 
optimization problems.  

Methodology 

Characterization of the Distribution Grid 

Firstly, the distribution grid was characterized to determine the parameters required for modelling. The parameters 
include the network design, power grid data (132kV, operating in swing mode), bus data in nominal kV (33kV and 
11kV busses), and branch data, i.e., transformers (MVA), transmission lines (km), peak load (MW), etc. Secondly, the 
feeder performance data (ATC&C %) was obtained from the power distribution company, Enugu Electricity 
Distribution Company (EEDC) for a comparative analysis of the impact of the modelled network. Modelling and 
simulations were done using the Electrical Transient Analyzer Program (ETAP) version 19.0.1, installed in a Windows 
10 Pro laptop, HP Intel Core i5 2.6GHz 8GB RAM. 

 

Figure 1: Single-line diagram of New Haven 132kV Transmission Grid 

Technical Feasibility for Modelling: 

The technical feasibility survey of the study area shows power transformers at the transmission substations: 2 x 60 
MVA 132/33kV, step-down transformers at the distribution feeders: 5 x 15, 8 x 7.5, 2 x 5, and 2 x 2.5 (MVA). There 
are 29 connected 11kV feeders, with a combined peak load of 102.8 MW, the total route length of the 11/33kV 
feeders from the source was 599.7 km, average daily availability at 17.04 hours, outage 6.96 hours, average losses, 
145.2 kWh daily, and 4.356 MWh monthly. 
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Financial Analysis 

The financial viability of the distribution grid (EEDC, 2021) was subject to a six (6) months analysis of the feeder 
performance: energy import (MW) and total losses (kWh). The report shows that the New Haven substation (area 
of research) lost an average of 22% of the energy imported between April and September 2021, amounting to about 
N55.8M, monthly ($139,500, at $/N400). This report is important for the post-simulation comparative analysis. 

Optimization Problems and Applied Principles 

The optimal location and sizing of reactive power compensators (RPC) in the power distribution grid, is a non-linear, 
multi-modal, multi-objective, mixed-integer, and highly constrained optimization problem. The power system's 
constraints and objective functions exhibit non-linearity, resulting in optimization solutions with multiple local 
optima, making it a multi-modal optimization challenge. Addressing the simultaneous goals of minimizing power 
losses, improving voltage profiles and power factor, and enhancing system load capacity constitutes a multi-
objective optimization task, while determining the optimal location and sizing involves mixed-integer optimization 
problems. 

The study utilizes the Electrical Transient Analyzer Program (ETAP), for the design, analysis, and optimization of 
electrical power systems to ensure reliability, stability, and efficiency. ETAP simplifies the optimization process by 
utilizing its built-in genetic algorithm (GA) for capacitor sizing and placement. This streamlined approach minimizes 
the extensive external coding and integration, thereby increasing accessibility for power engineers. The economic 
analysis was conducted using the Present Worth Method (PWM) to assess the cost implications. 

To determine the extensive optimization coding process, an integration of ETAP and MATLAB can be employed. This 
integration involves data collection, the development of a GA-based optimization algorithm with a defined objective 
function, configuration of GA parameters, execution of the optimization, transmission of optimized parameters to 
the power system model, and validation of outcomes to enhance overall system performance. Genetic algorithms 
(GA) serve as a population-based metaheuristic, evaluating the solution's objective function value and/or feasibility, 
ensuring pure evolution by enhancing local search operators.  

Furthermore, the objective function is influenced by operational constraints such as bus voltage, power flow, and 
power factor, as well as capacitor-related constraints, including the number of capacitors, their sizes, and the total 
reactive power. The optimization aims to address operating constraints such as branch and transformer overloading, 
bus voltage deviations, and power losses in the network while achieving goals like identifying optimal capacitor 
locations and sizes, enhancing system voltage and power factor, minimizing installation and operation costs, 
determining branch capacity release, and analyzing loading parameters.  

The calculation methods include: 

Load flow analysis 

Newton-Raphson method formulates and solves iteratively the following load flow equation: 

[
  ΔP  

 
ΔQ

] =  [
 𝐽1   𝐽2 
 𝐽

3
   𝐽4 

]   [
  ΔV  

 
Δδ

]         (1) 

where ΔP and ΔQ are bus real power and reactive power mismatch vectors between specified value and calculated 
value, respectively; ΔV and Δδ represent bus voltage magnitude and angle vectors in an incremental form; and J1 
through J4 are called Jacobian matrices. 

Using ETAP, Newton Raphson's load flow method was also compared with Adaptive Newton Raphson, and Fast-
Decoupled methods. 
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Optimal Capacitor Placement using ETAP 

The objective of optimal capacitor placement is to minimize the cost of the system. This cost is measured in four 
ways (fixed capacitor installation cost, capacitor purchase cost, capacitor bank operating cost (maintenance and 
depreciation), and cost of real power losses. This can be represented mathematically as: 

Min objective function =  

∑ (𝑥𝑖
𝑁𝑏𝑢𝑠 

𝑖 =1
𝐶0𝑖 +  𝑄𝑐𝑖  𝐶1𝑖 + 𝐵𝑖  𝐶2𝑖  𝑇)  +  𝐶2 ∑ 𝑇𝑙

𝑁𝑙𝑜𝑎𝑑 
𝑙 =1 𝑃𝐿

𝑙    (2) 

𝑁𝑏𝑢𝑠 = number of candidate buses  
𝐶0𝑖 = number of capacitors installed at bus i  
𝐶1𝑖 = per kVar cost of capacitor banks  
𝑄𝑐𝑖 = capacitors bank size in kVar 
𝐵𝑖 = number of capacitor banks 
𝐶2𝑖 = operating cost per bank, per year 
𝑇 = planning period (years) 
𝐶2 = cost of each kWh loss, in $/kWh 
𝑙 = load levels, maximum, average, and minimum 
𝑇𝑙 = time duration, in hours, of load level  𝑙 

𝑥𝑖 =
0

1
, 0 means no capacitors installed at bus i  

𝑃𝐿
𝑙  = total system loss at load level  𝑙 

Modelling of the Distribution Grid 

 

Figure 2: Configuring the transmission line parameters in ETAP 

After modelling the power grid and parameters as characterized, with buses and branches, the conductors were 
configured to mercury all aluminium conducts (AAC) Pirelli 111mm3, 7 strands, while the poles were set at 10.36 m, 
and spacing AB and BC at 1.25m respectively, to match the actual distribution grid. Other details are presented in 
Tables 1 and 2 below. 
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Table 1: Transformer impedance, reactance, and resistance values 

Transformer 
rating 

+ve sequence 
impedance  
(% Z) 

+ve sequence X 
over R ratio  
(X/R) 

+ve sequence R 
over X ratio  
(R/X) 

+ve sequence 
reactance  
(%X) 

+ve sequence 
resistance  
(%R) 

60 MVA 12.5 45 0.022 12.497 0.278 

15 MVA 10 20 0.050 9.988 0.499 

7.5 MVA 8.35 13 0.077 8.325 0.640 

Table 2: Phase Conductor Parameters 

Conductor 
Type 

AC resistance at system frequency in 
ohms per unit length, per conductor 

Inductive reactance due to both the internal 
and external flux in ohms per unit length, per 
conductor 

R-T1 (20 oC) R-T1 (75 oC) Xa ohms/1km Xa1 Xa megaohms/1km 

Aluminum 0.257 0.314 0.26 0.218 

 

 

Figure 3: The New Haven 132KV distribution grid (modelled) 

The New Haven 132KV distribution grid was modelled using ETAP. It has a power grid, 40 buses, 43 branches, and 
26 loads of 82.201 MW and 27.018 Mvar. 

Results and Discussion 

The Findings 

Load flow analysis using ETAP 

The comparative analysis of Newton Raphson, Adaptive Newton Raphson, and Fast-Decoupled load flow methods 
for the kW and kvar losses in the network is presented below. 

Table 3: Comparative analysis of NR, ANR, and FD load flow methods 

Method of Solution Newton Raphson Adaptive Newton Raphson Fast-Decoupled 

Precision of Solution 0.0001000 0.0020000 0.0001000 

System Frequency 50.00 Hz 50.00 Hz 50.00 Hz 

Number of Iterations 3 92 3 

Losses kW 2,269.6 2,269.6 2,269.6 
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Losses kvar 13,860.4 13,860.4 13,860.4 

From the outcomes presented above, it was observed that the Adaptive Newton-Raphson method required more 
iterations and provided a less precise solution, while the Fast-Decoupled method, although may sacrifice some 
accuracy in comparison to the Newton-Raphson method, was still deemed acceptable. Consequently, the Newton-
Raphson method was favoured due to its recognized robustness, accuracy, and capability to handle a broader 
spectrum of power system scenarios. The additional computational demands posed by the Newton-Raphson method 
were considered negligible, especially given the widespread availability of high-speed processors and substantial 
RAM capacity in modern laptop computers. 

In addition to other findings, the Newton-Raphson load flow analysis showed an average of 40.3% losses (3.1% active 
and 37.2% reactive) at the buses. These losses are distributed at 2.5% active and 3.8% reactive from the branches, 
while the transformers accounted for 19.7% and 89.8% active and reactive power losses, respectively. This is 
tabulated below. 

Table 4: Summary of active and reactive power losses 

  MW Mvar 

Power 73.544 37.287 

Losses 2.27 13.86 

Losses % 3.1% 37.2%    

Losses % MW Mvar 

Branch 2.5% 3.8% 

Transformer 19.7% 89.8% 

Typically, high Mvar losses in a transformer are caused by overloading, low power factor loads, poor voltage 
regulation, harmonics, high magnetic flux density, ageing or poor condition, and frequency variations. Please refer 
to the branch losses report in Appendix 1 for details. 
 

 

Figure 4: Rated and operating voltage magnitudes of the buses in per unit (pu) 

Figure 4 above shows that 23 out of the 40 11/33kV buses in the distribution grid reported under voltages, operating 
below the IEEE acceptable range of 0.95pu to 1.05pu for healthy buses. The most critical buses include bus 15 at 
0.85 per unit (pu) and buses 28, 29, 12, and 14, at roughly 0.89 pu. The details of the bus loading and critical report 
(under-voltage buses) are tabulated in Appendix 2. 

Optimal Capacitor Sizing and Placement (OCP) 

The objectives of the OCP are voltage support and PF correction, with a global constraint of 95 > % V< 105.  

0.8

0.8

0.9

0.9

1.0

1.0

Rated (pu) Operating (pu)
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Figure 5: Optimal Capacitor Placement in the power grid 

Please refer to Appendix 3a and 3b for a more extensive perspective. 
Report on Voltage and Power Factor Optimization 

Table 5: OCP Voltage Optimization Report 

  Initial Conditions After Optimization % Improvement 

ID Rated voltage (kV) Voltage (pu) Condition Power (MVA) Voltage (pu) MVA Voltage MVA 

Bus-1 132 0.99 Normal 82.46 1.00 104.32 1% 27% 

Bus-2 33 0.96 Normal 45.06 1.00 60.86 4% 35% 

Bus-3 33 0.96 Normal 22.50 1.00 30.52 4% 36% 

Bus-4 33 0.96 Normal 18.81 1.00 26.05 4% 38% 

Bus-5 33 0.95 Normal 3.72 0.98 4.99 4% 34% 

Bus-6 11 0.93 Under Voltage 3.65 0.96 4.87 3% 33% 

Bus-8 33 0.94 Under Voltage 5.26 0.98 7.03 4% 34% 

Bus-9 11 0.93 Under Voltage 5.19 0.96 6.90 3% 33% 

Bus-12 33 0.89 Under Voltage 12.60 0.96 19.23 7% 53% 

Bus-13 33 0.92 Under Voltage 8.22 0.96 11.07 5% 35% 

Bus-14 11 0.89 Under Voltage 8.01 0.96 12.08 8% 51% 

Bus-15 11 0.85 Under Voltage 12.06 0.95 18.78 11% 56% 

Bus-22 33 0.96 Normal 13.95 1.00 19.27 4% 38% 

Bus-23 33 0.94 Under Voltage 2.47 0.98 3.30 4% 34% 

Bus-24 33 0.93 Under Voltage 3.78 0.98 5.56 5% 47% 

Bus-25 33 0.93 Under Voltage 1.86 0.98 2.71 5% 45% 

Bus-26 33 0.92 Under Voltage 3.40 0.97 4.82 6% 42% 

Bus-27 33 0.92 Under Voltage 2.17 0.97 2.86 5% 31% 

Bus-28 11 0.89 Under Voltage 2.10 0.95 2.95 7% 41% 

Bus-29 11 0.89 Under Voltage 3.31 0.97 4.85 8% 47% 

Bus-30 11 0.90 Under Voltage 1.81 1.00 3.16 11% 75% 

Bus-31 11 0.91 Under Voltage 3.71 1.00 6.52 9% 76% 

Bus-32 11 0.93 Under Voltage 2.44 0.96 3.25 3% 33% 

Bus-39 33 0.94 Under Voltage 7.74 0.96 9.59 1% 24% 

Bus-40 11 0.92 Under Voltage 7.57 0.95 10.02 3% 32% 
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Bus-43 33 0.94 Under Voltage 10.53 0.95 13.36 2% 27% 

Bus-44 11 0.91 Under Voltage 10.20 0.95 14.47 5% 42% 

Bus-45 33 0.97 Normal 34.24 0.98 42.96 1% 25% 

Bus-48 33 0.97 Normal 4.60 0.98 5.87 1% 28% 

Bus-49 11 0.94 Under Voltage 4.48 0.95 5.68 1% 27% 

Bus-51 33 0.97 Normal 1.86 0.98 2.37 1% 28% 

Bus-52 33 0.97 Normal 1.40 0.98 1.79 1% 28% 

Bus-53 11 0.96 Normal 1.84 0.97 2.34 1% 28% 

Bus-54 11 0.96 Normal 1.39 0.97 1.77 1% 28% 

Bus-57 33 0.95 Normal 5.62 0.97 7.28 2% 29% 

Bus-58 11 0.92 Under Voltage 5.44 0.97 8.11 6% 49% 

Bus-61 33 0.97 Normal 0.47 0.98 0.60 1% 28% 

Bus-62 11 0.96 Normal 0.47 0.98 0.60 1% 28% 

Bus-64 33 0.97 Normal 1.39 0.98 1.79 1% 28% 

Bus-65 11 0.96 Normal 1.38 0.97 1.77 1% 28% 

Table 6: Summary of OCP Voltage Optimization Report 

  Initial Conditions Optimized 

Rated (kV) Avg. Vol. Avg. MVA Avg. Vol. Avg. MVA 

11 0.92  4.41  0.97  6.36  

33 0.95  9.62  0.98  12.90  

132 0.99  82.46  1.00  104.32  

AVG. 0.94  9.23  0.97  12.41  

Table 5 is summarized in Table 6 above, and it shows that voltage was optimized for the 11 kV, from an initial 
operating average of 0.92 pu to 0.97 pu, while the 33 kV increased from an initial operating average of 0.95 pu to 
0.98 pu. In addition, the average of the apparent power in the network increased in 11 kV from 4.41 MVA to 6.36 
MVA, and in 33 kV from 9.62 MVA to 12.90 MVA. Voltage optimization resulted in improved power quality with 
voltage levels for both 11 kV and 33 kV networks reaching higher and more stable values. Furthermore, there was a 
significant increase in apparent power, enhancing the overall network capacity. 
Table 7: Summary of total generation, loading & demand (max. loading) 

  Before optimization After optimization 

MW Mvar MVA % PF   MW Mvar MVA % PF   

Total Demand: 73.54  37.29  82.46  89.19  Lag 103.44  13.55  104.32  99.15  Lag 

Total Motor Load 4.29  1.41  4.52  95.00  Lag 5.37  1.76  5.65  95.00  Lag 

Total Static Load 6.98  22.02  70.51  95.00  Lag 94.15  -11.40 94.84  99.27  Lead 

Table 7 shows some of the significant improvements in the network as discussed below.  

Improved Power Factor: The power factor increased from 89.19% to 99.15% after the capacitor placement. This 
indicates improved efficiency in power transmission and distribution. A higher power factor reduces the burden on 
the electrical system, decreases line losses, and enhances voltage stability.  

Increased Maximum Loading: The maximum loading capacity of the system increased from 73.54 MW to 103.44 
MW. This means that the power system can now accommodate a higher electrical load, allowing for future growth 
in demand without requiring costly infrastructure upgrades. 

Reduced Reactive Power (Mvar): The reduction in reactive power from 37.29 Mvar to 13.55 Mvar signifies a decrease 
in the system's reactive power demand. This reduction not only lowers energy losses but also reduces the need for 
additional compensation equipment, leading to cost savings. 
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Optimal Capacitor Placement Cost Analysis 
Table 8: Summary of OCP Cost Implications 

Nominal 
kV 

kvar/
Bank 

Number of 
Banks 

Total 
kvar 

Cost of 
Purchase ($) 

Cost of 
Installation ($) 

Operation 
Cost/Year ($) 

11 300 116 34,800 1,044,000 7,200 34,800 

33 400 27 10,800 432,000 4,800 10,800 

Total 
 

143 45,600 1,476,000 12,000 45,600 

The summary of the OCP optimization outcome indicates the necessity of 143 capacitor banks, comprising 116 units 
of 300 kvar and 27 units of 400 kvar, with a total cost of $1,533,600 covering procurement, installation, and 
operational expenses for the initial 5-year period. Please refer to Table 9 below for the candidate buses. 

Table 9: Capacitor Sizing and Placement per Candidate Buses 

Candidate Buses Capacitor Information  Cost ($)  

 ID  Nominal 
kV  

kvar/ 
Bank  

No. of 
Banks  

Total kvar  Installation   Purchase  Oper./Year  

 Bus-12  33 400 21 8,400 1,200 336,000 8,400 

 Bus-13  33 400 1 400 1,200 16,000 400 

 Bus-14  11 300 18 5,400 800 162,000 5,400 

 Bus-15  11 300 25 7,500 800 225,000 7,500 

 Bus-26  33 400 4 1,600 1,200 64,000 1,600 

 Bus-27  33 400 1 400 1,200 16,000 400 

 Bus-28  11 300 3 900 800 27,000 900 

 Bus-29  11 300 6 1,800 800 54,000 1,800 

 Bus-30  11 300 6 1,800 800 54,000 1,800 

 Bus-31  11 300 13 3,900 800 117,000 3,900 

 Bus-40  11 300 11 3,300 800 99,000 3,300 

 Bus-44  11 300 21 6,300 800 189,000 6,300 

 Bus-58  11 300 13 3,900 800 117,000 3,900 

 Total  
  

143 45,600 12,000 1,476,000 45,600 

Table 9 presents the details of capacitor bank specifications (sizing and placement) for various candidate buses in 
the distribution grid. 

The project's financial viability is justifiable, considering the enhancements presented in Tables 6 and 7, alongside 
the project expenses outlined in Table 8 above. The annual savings in energy costs due to reduced losses are 
determined, based on the average energy cost (AEC) valued at $0.12/kWh (≈ N50/kWh), the planning period 
proposed for 5 years, with an interest rate of 12%. 

Annual Savings = (Initial Losses - New Losses) × AEC 
Initial Losses = Initial Maximum Loading (73.54 MW) × (1 - Initial Power Factor (89.19%)) 
New Losses = New Maximum Loading (103.44 MW) × (1 - New Power Factor (99.15%)) 

Now, the annual savings: 
Annual Savings = (73.54 MW × (1 - 0.8919)) - (103.44 MW × (1 - 0.9915)) × $0.12/kWh 
Annual Savings ≈ $1,933,500 per year 

The payback period: 
Payback Period = Optimal Capacitor Placement Cost / Annual Savings 
Payback Period = $1,533,600 / $1,933,500 ≈ 0.79 years 
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The payback period is approximately 0.79 years (9.48 months), which means that the project will become viable for 
power loss reduction in less than one year. The assumed cost savings due to reduced losses amount to approximately 
$1,933,500 per year once the project is implemented. 

Summary of Findings 

The research findings are discussed below. 

The technical feasibility observed that some of the 33 kV feeder lines exceeded the maximum length stipulated by 
the International Electrotechnical Commission (IEC) standard. The length of the distribution lines and the sizes of the 
conductors are the major reasons for technical losses (Nationalgrid, 2022). According to IEC3 600384, the 
standardized conductor size for a medium voltage (1 kV ‐ 35 kV) is All Alloy Aluminum Conductors, 120 mm2 to 200 
mm2 (AAAC7). However, the field survey shows that some of the 11kV distribution lines have aluminium conductor 
sizes of 35 mm2.  

In ETAP, Newton Raphson's load flow method is mostly preferred. According to the report, the distribution grid 
experiences substantial losses, with 40.3% of total power being dissipated as heat. These losses were further broken 
down into 3.1% for active power and a staggering 37.2% reactive power burden. This burden is particularly 
significant, with transformers being the primary source, contributing a notable 89.8%. High power losses, especially 
in the form of reactive power, can strain the distribution system, leading to reduced overall efficiency and increased 
operational costs. 

The research findings indicate a successful optimization of voltage levels within the 11 kV and 33 kV networks. 
Notably, the power factor improved from 89.19% to 99.15%, increasing the system's maximum loading capacity from 
73.54 MW to 103.44 MW, and simultaneously decreasing the reactive power burden from 37.29 Mvar to 13.55 Mvar. 
These changes not only reduce energy losses but also lower the requirement for additional compensation 
equipment, resulting in cost savings. 

The metaheuristic technique proves to be very reliable and cost-effective for optimal capacitor sizing and placement 
in the distribution network. The expenditure of $1,533,600 on optimal capacitor placement, encompassing 
procurement, installation, and the initial 5-year operational period, constitutes a sound and feasible investment. If 
implemented, the project yields an annual cost savings of approximately $1,933,500, with a projected payback 
period of 9.48 months. Therefore, the cost of actual power losses in the study area projected at $139,500 per month 
could fund the cost for the OCP project in about 11 months ($1,533,600/$139,500). 

Conclusion 

In conclusion, the research findings revealed technical feasibility challenges, particularly related to the length of 33 
kV feeder lines and conductor sizes, which contribute significantly to technical losses. These losses, particularly in 
the form of reactive power, can adversely impact system efficiency and operational costs. Furthermore, the research 
demonstrated the successful optimization of voltage levels within the 11 kV by 5.43% and 33 kV by 3.16%. Also, the 
apparent power increased by approximately 44.22% for the 11 kV network, and 34.21% for the 33 kV network, 
amongst others. The enhancements in voltage, apparent power, and power factor represent substantial 
improvements in both power quality and network capacity. 

ETAP uses a genetic algorithm (GA) – a metaheuristic technique to optimize the sizing and placement of capacitors. 
The investment of $1,533,600 in optimal capacitor placement, covering procurement, installation, and the initial 5-
year operation, is well-justified, with anticipated annual cost savings of approximately $1,933,500 and a projected 
payback period of less than 11 months. 

This study confirms that reactive power compensation and voltage optimization are central to power system quality, 
and the GA-based OCP approach helps to improve system-level reliability, reactive power compensation (Legha & 
Torkestani, 2016, Abadia, 2019), net-maximum economic benefits, and operational risk mitigation (Alvarez-
Alvarado, 2020). To further mitigate losses in transmission and distribution lines, it is advisable to adhere to standard 
cable size and length, conduct harmonic analysis with the implementation of filters, consider the addition of parallel 
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feeders, and strategically position distribution transformers. Lastly, further research is recommended in the 
integration of harmonic studies with reactive power compensation and voltage optimization, using metaheuristics. 

References 

Abadia, G. (2019). Load flow analysis of 138/69kV substation using Electrical Transient and Analysis Program 
(ETAP). Retrieved from https://scholarworks.uark.edu/eleguht/67 

Abhishek, B., Dharmpal, S., Sudipta, S., & Ira, N. (2022). Cognitive Big Data Intelligence with a Metaheuristic 
Approach. Journal of Cognitive Data Science in Sustainable Computing, 71(99). https://doi.org/10.1016/B978-0-
323-85117-6.00008-X 

Ahmad, A., & Sirjani, R. (2020). Optimal placement and sizing of multi-type FACTS devices in power systems using 
metaheuristic optimization techniques: An updated review. https://doi.org/10.1016/j.asej.2019.10.013 

Alvarez-Alvarado, M. (2020). Power system reliability enhancement with reactive power compensation and 
operational risk assessment with smart maintenance for power generators. Retrieved from 
https://etheses.bham.ac.uk/id/eprint/10234/ 

Chopard, B., & Tomassini, M. (2018). An Introduction to Metaheuristics for Optimization. Natural Computing Series. 
Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-93073-2 

Enugu Electricity Distribution Company, EEDC. (2021). Feeder Performance Report. In-house. Unpublished. 

Enugu Electricity Distribution Company, EEDC. (2022). Feeder Performance Report. In-house. Unpublished. 

Ismail, B., Wahab, N. I., Othman, M. L., Radzi, A. M., Vijyakumar, K. N., & Naain, M. N. (2020). A comprehensive 
review on optimal location and sizing of reactive power compensation using hybrid-based approaches for power 
loss reduction, voltage stability improvement, voltage profile enhancement, and loadability enhancement. IEEE 
Access, 10, 3043297. https://doi.org/10.1109/ACCESS.2020.3043297 

Kavitha, K., & Neela, R. (2018). Optimal allocation of multi-type FACTS devices and its effect in enhancing system 
security using BBO, WIPSO, and PSO. J. Elect. Sys. Inf. Technol., 5(3), 777-793. 

Kizielewicz, B., & Sałabun, W. (2020). A new approach to identifying a multi-criteria decision model based on 
stochastic optimization techniques. https://doi.org/10.3390/sym12091551 

Legha, M., & Torkestani, A. (2016). Analysis of capacitor placement in radial distribution networks for productivity 
improvement using GA and CSA approaches. Science Arena Publications: Specialty Journal of Engineering and 
Applied Science, 2(3), 1-8. 

Moghadam, M., Falaghi, H., & Farhadi, M. (2020). A novel method of optimal capacitor placement in the presence 
of harmonics for power distribution network using NSGA-II multi-objective genetic optimization algorithm. Journal 
of Mathematical and Computational Applications. https://doi.org/10.3390/mca25010017 

Nationalgrid. (2022). What causes losses? https://www.nationalgrid.co.uk/smarter-networks/losses/what-causes-
losses 

Parmar, J. (2011). How reactive power is helpful to maintain a system healthy. Electrical Engineering Portal. 
https://electrical-engineering-portal.com/how-reactive-power-is-helpful-to-maintain-a-system-healthy 

Rajpurohit, J., Sharma, T. K., Abraham, A., & Vaishali, A. (2017). Glossary of metaheuristic algorithms. International 
Journal of Computer, Information Systems and Industrial Management Applications, 9, 181-205. 

https://doi.org/10.5281/zenodo.8416196
https://scholarworks.uark.edu/eleguht/67
https://doi.org/10.1016/B978-0-323-85117-6.00008-X
https://doi.org/10.1016/B978-0-323-85117-6.00008-X
https://doi.org/10.1016/j.asej.2019.10.013
https://etheses.bham.ac.uk/id/eprint/10234/
https://doi.org/10.1007/978-3-319-93073-2
https://doi.org/10.1109/ACCESS.2020.3043297
https://doi.org/10.3390/sym12091551
https://doi.org/10.3390/mca25010017
https://www.nationalgrid.co.uk/smarter-networks/losses/what-causes-losses
https://www.nationalgrid.co.uk/smarter-networks/losses/what-causes-losses
https://electrical-engineering-portal.com/how-reactive-power-is-helpful-to-maintain-a-system-healthy


American Journal of Applied Sciences and Engineering | AJASE 
Volume 4, Number 3 | 2023 | 1-17 | DOI: https://doi.org/10.5281/zenodo.8416196 

IFO & EKE, 2023  
13 

Saddique, M., Bhatti, A., Haroon, S., Sattar, M., Amin, S., Sajjad, I., Haq, S., Awan, A., & Rasheed, N. (2020). Solution 
to optimal reactive power dispatch in transmission system using meta-heuristic techniques—Status and 
technological review. Electric Power Systems Research. https://doi.org/10.1016/j.epsr.2019.106031 

Stanelyte, D., & Radziukynas, V. (2020). Review of voltage and reactive power control algorithms in electrical 
distribution networks. Energies, 13(1), 58-84. 
  

https://doi.org/10.5281/zenodo.8416196
https://doi.org/10.1016/j.epsr.2019.106031


American Journal of Applied Sciences and Engineering | AJASE 
Volume 4, Number 3 | 2023 | 1-17 | DOI: https://doi.org/10.5281/zenodo.8416196 

IFO & EKE, 2023  
14 

Appendix 1: Newton Raphson load flow (Branch Losses Report) 

  From-To Bus 
Flow 

To-From Bus Flow Losses % Bus Voltage Vd 
%Drop 
in Vmag Branch ID kW Kvar MW Mvar kW kvar From To 

Line.19 3.61  1.38  (3.54) (1.34) 73.51  35.36  95.64  93.21  2.44  

Line.2 3.51  1.32  (3.49) (1.31) 28.11  12.03  95.64  94.68  0.96  

Line.20 2.35  0.82  (2.32) (0.84) 30.60  (14.38) 95.64  94.09  1.55  

Line.27 1.77  0.63  (1.73) (0.70) 41.03  (66.74) 95.64  92.86  2.78  

Line.28 3.26  1.30  (3.16) (1.26) 104.29  37.10  95.64  91.82  3.83  

Line.31 2.06  0.79  (2.00) (0.84) 54.01  (46.37) 95.64  92.50  3.15  

Line.4 5.01  1.88  (4.94) (1.83) 69.24  55.10  95.64  93.99  1.66  

Line.7 12.17  5.80  (11.52) (5.09) 643.24  704.69  95.64  89.31  6.33  

Line.8 7.90  3.30  (7.64) (3.04) 259.45  263.07  95.64  91.70  3.94  

Line-29 (7.21) (2.81) 7.36  2.95  145.46  142.69  94.46  96.86  2.40  

Line-32 (9.73) (4.03) 10.00  4.32  274.57  291.21  93.52  96.86  3.34  

Line-35 4.27  1.70  (4.27) (1.70) 0.98  0.62  96.86  96.83  0.03  

Line-37 1.75  0.61  (1.75) (0.62) 4.15  (8.18) 96.86  96.57  0.29  

Line-38 1.32  0.45  (1.32) (0.46) 2.35  (10.26) 96.86  96.64  0.21  

Line-41 5.27  2.24  (5.19) (2.16) 87.09  71.96  96.86  94.85  2.01  

Line-44 0.44  0.12  (0.44) (0.15) 0.69  (34.10) 96.86  96.67  0.19  

Line-46 1.32  0.45  (1.32) (0.46) 3.24  (14.21) 96.86  96.56  0.30  

T010 2.00  0.84  (1.99) (0.65) 14.13  183.74  96.86  89.20  3.30  

T011 7.21  2.81  (7.19) (2.36) 22.37  447.42  96.86  92.36  2.10  

T012 9.73  4.03  (9.69) (3.18) 42.22  844.36  96.86  90.56  2.96  

T013 4.27  1.70  (4.26) (1.40) 15.01  300.17  96.86  94.38  2.45  

T014 1.75  0.62  (1.75) (0.57) 2.46  49.16  96.86  95.62  0.95  

T015 1.32  0.46  (1.32) (0.43) 1.39  27.82  96.86  95.93  0.71  

T016 5.19  2.16  (5.16) (1.70) 23.38  467.58  96.86  91.72  3.13  

T017 0.44  0.15  (0.44) (0.15) 0.23  4.67  96.86  96.32  0.35  

T018 1.32  0.46  (1.32) (0.43) 1.39  27.77  96.86  95.85  0.71  

T02 7.64  3.04  (7.61) (2.50) 26.73  534.62  96.86  89.39  2.32  

T03 11.52  5.09  (11.46) (3.77) 66.24   1,324.82  96.86  85.50  3.81  

T04 4.94  1.83  (4.93) (1.62) 10.44  208.89  96.86  92.58  1.41  

T05 3.49  1.31  (3.47) (1.14) 13.21  171.74  96.86  92.92  1.77  

T06 3.54  1.34  (3.52) (1.16) 14.08  183.00  96.86  91.38  1.83  

T07 2.32  0.84  (2.32) (0.76) 5.87  76.35  96.86  92.93  1.16  

T08 1.73  0.70  (1.72) (0.56) 10.30  133.86  96.86  90.09  2.78  

T09 3.16  1.26  (3.14) (1.03) 17.59  228.73  96.86  89.26  2.56  

TR1 31.81  15.44  (31.75) (12.84) 57.86   2,603.53  96.86  96.86  3.14  

TR2 41.74  21.85  (41.64) (17.22) 102.72   4,622.57  96.86  95.64  4.36  

 Total 184.18  81.88   
(181.91) 

 
(68.02) 

 
2,269.63  

 
13,860.41  

 
3,470.23  

 
3,364.49  

77.18  
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Appendix 2: Bus loading and Critical report (under-voltage buses) 

Bus Directly Connected Load Total Bus Load Critical Report  

Constant kVA Constant Z 

ID kV MW Mvar MW Mvar MVA %PF Amp Operating (PU) Condition 

Bus-1 132.000         82.456 89.2 360.7 0.99 Normal 

Bus-2 33.000         45.058 92.4 824.2 0.96 Normal 

Bus-3 33.000         22.505 93.1 411.7 0.96 Normal 

Bus-4 33.000         18.811 91.3 344.1 0.96 Normal 

Bus-5 33.000         3.724 93.6 68.8 0.95 Normal 

Bus-6 11.000 0.200 0.066 3.272 1.076 3.655 95.0 206.4 0.93 Under Voltage 

Bus-8 33.000         5.264 93.8 98.0 0.94 Under Voltage 

Bus-9 11.000 0.285 0.094 4.641 1.526 5.186 95.0 294.0 0.93 Under Voltage 

Bus-12 33.000         12.598 91.5 246.8 0.89 Under Voltage 

Bus-13 33.000         8.217 92.9 156.8 0.92 Under Voltage 

Bus-14 11.000 0.470 0.155 7.139 2.346 8.010 95.0 470.3 0.89 Under Voltage 

Bus-15 11.000 0.770 0.253 10.688 3.513 12.060 95.0 740.4 0.85 Under Voltage 

Bus-22 33.000         13.951 93.6 255.2 0.96 Normal 

Bus-23 33.000         2.468 94.1 45.9 0.94 Under Voltage 

Bus-24 33.000         3.784 93.5 71.0 0.93 Under Voltage 

Bus-25 33.000         1.862 92.7 35.1 0.93 Under Voltage 

Bus-26 33.000         3.403 92.9 64.8 0.92 Under Voltage 

Bus-27 33.000         2.173 92.3 41.1 0.92 Under Voltage 

Bus-28 11.000 0.124 0.041 1.867 0.614 2.095 95.0 123.3 0.89 Under Voltage 

Bus-29 11.000 0.195 0.064 2.948 0.969 3.308 95.0 194.5 0.89 Under Voltage 

Bus-30 11.000 0.105 0.034 1.611 0.530 1.806 95.0 105.2 0.90 Under Voltage 

Bus-31 11.000 0.209 0.069 3.316 1.090 3.710 95.0 213.1 0.91 Under Voltage 

Bus-32 11.000 0.133 0.044 2.182 0.717 2.437 95.0 137.6 0.93 Under Voltage 

Bus-39 33.000         7.743 93.2 143.4 0.94 Under Voltage 

Bus-40 11.000 0.418 0.137 6.774 2.227 7.571 95.0 430.3 0.92 Under Voltage 

Bus-43 33.000         10.531 92.4 197.0 0.94 Under Voltage 

Bus-44 11.000 0.584 0.192 9.104 2.992 10.198 95.0 591.1 0.91 Under Voltage 

Bus-45 33.000         34.245 92.7 618.6 0.97 Normal 

Bus-48 33.000         4.597 92.9 83.1 0.97 Normal 

Bus-49 11.000 0.238 0.078 4.019 1.321 4.481 95.0 249.2 0.94 Under Voltage 

Bus-51 33.000         1.856 94.2 33.6 0.97 Normal 

Bus-52 33.000         1.397 94.4 25.3 0.97 Normal 

Bus-53 11.000 0.095 0.031 1.650 0.542 1.837 95.0 100.8 0.96 Normal 

Bus-54 11.000 0.071 0.023 1.246 0.410 1.386 95.0 75.9 0.96 Normal 

Bus-57 33.000         5.620 92.3 103.7 0.95 Normal 

Bus-58 11.000 0.304 0.100 4.859 1.597 5.435 95.0 311.0 0.92 Under Voltage 

Bus-61 33.000         0.467 94.7 8.5 0.97 Normal 

Bus-62 11.000 0.024 0.008 0.419 0.138 0.466 95.0 25.4 0.96 Normal 

Bus-64 33.000         1.395 94.4 25.3 0.97 Normal 

Bus-65 11.000 0.071 0.023 1.244 0.409 1.384 95.0 75.8 0.96 Normal 
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Appendix 3a: Optimal Capacitor Placement in the power grid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.5281/zenodo.8416196


American Journal of Applied Sciences and Engineering | AJASE 
Volume 4, Number 3 | 2023 | 1-17 | DOI: https://doi.org/10.5281/zenodo.8416196 

IFO & EKE, 2023  
17 

Appendix 3b: Optimal Capacitor Placement in the power grid (continuation) 
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