

Enhancing Reduction of Oil Pipeline Vandalization and Leakage Using Intelligent IoT Solutions

Ngang Bassey Ngang¹, Okoro, Gaius Nnanna², Ogbuokebe, Stanislaus Kaosoluchukwu³, John John Uket⁴

¹Department of Electrical and Electronic Engineering, Veritas University, Abuja, Nigeria.

²Department of Petroleum Engineering, Federal University of Technology Owerri (FUTO), Nigeria.

³National Space Research Development Agency (NASRDA), Abuja, Nigeria

⁴Technical Support Department, Federal Ministry of Science, Innovation and Technology, Abuja, Nigeria

Abstract

Oil pipeline leakage and vandalism significantly hinder economic growth, inflating fuel and consumable goods prices, which most heavily affects the poor. The primary cause is the lack of effective mechanisms to detect and address these issues promptly. Implementing IoT can mitigate this problem by reducing pipeline leaks and vandalism. This approach involves characterizing the delivery process based on fluid flow rate, pressure, and temperature, and developing an IoT-based fuzzy rule system to detect and reduce these incidents. Additionally, an IoT-based SIMULINK model is created to implement this technology during pipeline delivery, alongside an algorithm to prevent pipeline vandalization. An integrated SIMULINK model combines conventional and IoTbased technologies on the MATLAB platform. A program is also developed to detect pipeline leaks using IoT, with simulation results evaluated through predictive validation. Results indicate that the conventional oil pipeline temperature of 36°C, failing to meet the 37-38°C threshold, causes leaks. However, integrating IoT sensors stabilized the temperature to 37°C, ensuring free oil flow without leaks. The conventional pressure of 29 bar, below the 30.35 bar threshold, leads to leaks or vandalism, reducing financial stability. IoT integration detected and reported leaks, maintaining the required pressure. This approach showed a 4.7% improvement in pressure stabilization for leak prevention. The conventional oil flow rate of 2.5 miles/hour, below the 3-8 miles/hour threshold, caused leaks, while IoT integration achieved the necessary 3 miles/hour rate, showing a 20% improvement. The conventional volume of oil passing through was 14 m³, below the 15.82-337.4 m³ threshold, causing leaks. IoT integration detected and normalized it to 16.8 m³, improving detection and normalization by 20%. The conventional oil leakage percentage was 31.9%, which reduced to 29.12% with IoT integration, showing a 2.78% improvement in leakage reduction. These results demonstrate that incorporating IoT enhances the detection and resolution of pipeline leaks and vandalism.

KeywordsOil Pipe Vandalization; Leakage; Intelligent IoT Solutions; IoT-based SIMULINK modelCitationNgang, B. N., Okoro, G. N., Ogbuokebe, S. K. & Uket, J. J. (2024). Enhancing Reduction of Oil P

Ngang, B. N., Okoro, G. N., Ogbuokebe, S. K. & Uket, J. J. (2024). Enhancing Reduction of Oil Pipeline Vandalization and Leakage Using Intelligent IoT Solutions. *American Journal of Applied Sciences and Engineering*, *5(3)* 1-14. <u>https://doi.org/10.5281/zenodo.13748884</u>

Introduction

Oil pipelines are critical infrastructures that transport petroleum products across vast distances. However, these pipelines are frequently subjected to leakage and vandalism, leading to substantial economic losses and environmental damage. Leakage can result from corrosion, mechanical failures, or operational errors, while vandalism typically involves intentional damage for illegal siphoning or sabotage. Addressing these issues is crucial for maintaining the integrity of oil supply chains and ensuring economic stability (Chen, Yang, & Liu, 2019; Gupta & Kumar, 2020).

Traditional methods for monitoring pipelines often fail to detect issues promptly, resulting in delayed responses and exacerbated damage. These methods typically rely on periodic inspections and manual reporting, which can be inefficient and prone to errors. The lack of real-time data makes it difficult to respond promptly to issues, leading to prolonged downtime and increased repair costs (Hsu & Lin, 2018; Kim & Lee, 2021). In some cases, the availability of reliable electric power source to provide constant power supply depends on Distributed Generators usually referred to as stand-alone placed in remote locations (Ugwu, Ude & Ngang, 2021).

With the advent of the Internet of Things (IoT), there is an opportunity to implement more sophisticated and responsive monitoring systems. IoT-based solutions can provide real-time data on pipeline conditions, enabling quicker detection and resolution of leaks and vandalism incidents. This technology involves deploying various sensors along the pipeline to continuously monitor parameters such as flow rate, pressure, and temperature. The data collected is then analyzed using advanced algorithms, including fuzzy logic, to detect anomalies and trigger alerts for immediate action (Li & Zhang, 2022; Mahajan & Sharma, 2019).

This article explores the application of IoT technologies to enhance the detection and reduction of oil pipeline leaks and vandalism. By integrating IoT sensors with fuzzy logic systems, we propose a comprehensive approach that improves the monitoring and maintenance of oil pipelines. This approach not only addresses the limitations of traditional monitoring methods but also leverages the advantages of real-time data analytics and predictive maintenance (Patel & Desai, 2020; Singh & Kaur, 2021).

Extent of Past Related Works

Challenges in Oil Pipeline Management

The management of oil pipelines is fraught with challenges, including the detection of leaks and the prevention of vandalism. Traditional monitoring systems often rely on periodic inspections and manual reporting, which can be inefficient and prone to errors. The lack of real-time data makes it difficult to respond promptly to issues, leading to prolonged downtime and increased repair costs (Wang & Liu, 2022; Zhang & Chen, 2020). Furthermore, manual inspections are labor-intensive and may not cover all parts of the pipeline comprehensively, leaving certain sections vulnerable to undetected issues (Chen et al., 2019; Gupta & Kumar, 2020).

IoT Solutions for Pipeline Monitoring

IoT technology offers a promising solution to the challenges of pipeline monitoring. IoT sensors can continuously collect data on various parameters such as flow rate, pressure, and temperature. This data can be transmitted in real-time to monitoring centers, where it can be analyzed to detect anomalies indicative of leaks or vandalism (Hsu & Lin, 2018; Kim & Lee, 2021). The implementation of IoT in pipeline monitoring has been shown to enhance the accuracy and timeliness of leak detection, thereby reducing the risk of severe damage and associated costs (Li & Zhang, 2022; Mahajan & Sharma, 2019).

Fuzzy Logic Systems

Fuzzy logic systems are well-suited for handling the uncertainties and variabilities inherent in pipeline monitoring. By incorporating fuzzy rules, these systems can make more nuanced decisions based on the data collected by IoT sensors. For example, a fuzzy logic system can determine the likelihood of a leak based on subtle changes in pressure and temperature that might not be detected by traditional threshold-based systems (Patel & Desai, 2020; Singh & Kaur, 2021). The integration of fuzzy logic with IoT technologies enhances the system's ability to detect and respond to pipeline issues in a more intelligent and adaptive manner (Wang & Liu, 2022; Zhang & Chen, 2020).

Previous Studies and Applications

Several studies have demonstrated the effectiveness of IoT and fuzzy logic systems in pipeline monitoring. Chen et al. (2019) highlighted the advantages of smart monitoring systems in reducing response times to pipeline leaks. Gupta and Kumar (2020) discussed the application of fuzzy logic in enhancing the accuracy of leak detection systems. Hsu and Lin (2018) provided an overview of real-time monitoring systems using IoT, emphasizing their potential to improve pipeline integrity management. Kim and Lee (2021) explored the use of machine learning in conjunction with IoT for pipeline security, showcasing the benefits of advanced analytics in this field.

Li and Zhang (2022) examined the role of predictive maintenance in pipeline management, demonstrating how IoT can facilitate proactive maintenance strategies. Mahajan and Sharma (2019) focused on the implementation of fuzzy logic in oil pipeline monitoring, highlighting its ability to handle complex data patterns. Patel and Desai (2020) reviewed various IoT applications in pipeline integrity management, emphasizing the need for integrated solutions. Singh and Kaur (2021) provided a comprehensive review of IoT applications in oil pipeline management, identifying key technologies and challenges. Wang and Liu (2022) discussed the technological advancements and challenges in IoT-enabled smart oil pipelines. Zhang and Chen (2020) explored the use of fuzzy logic control for leak detection, demonstrating its effectiveness in real-world applications. From the knowledge of fluid mechanics, the oil pipe line leakage is identified when the pressure of oil flowing in the pipe reduces, and the flow rate of oil pipe line indicates if there is leakage or not.

Methodology

To characterize delivery process with respect to pipe line diameter, fluid volumetric flow rate, pressure, and temperature involves the following steps:

- i. This approach involves characterizing the delivery process based on fluid flow rate, pressure, and temperature, a
- ii. Developing an IoT-based fuzzy rule system to detect and reduce these incidents.
- iii. Creating an IoT-based SIMULINK model to implement this technology during pipeline delivery,
- iv. Developing an algorithm to prevent pipeline vandalization.
- v. Integrating SIMULINK model that combines conventional and IoT-based technologies on the MATLAB platform.
- vi. Finally Developing a program to detect pipeline leaks using IoT, with simulation results evaluated through predictive validation.

System Design and Characterization

This approach involves characterizing the delivery process based on fluid flow rate, pressure, and temperature, A closer look at the delivery process with respect to pipe line diameter, fluid volumetric flow rate, pressure, and temperature is the first step solving our problem. The proposed IoT-based monitoring system integrates multiple sensors along the pipeline to measure flow rate, pressure, and temperature. These sensors are connected to a central monitoring unit that uses fuzzy logic algorithms to analyze the data and detect potential issues. The system is designed to provide real-time alerts to operators, enabling immediate action to address detected problems.

SIMULINK Model

To simulate the proposed system, we developed a SIMULINK model that integrates both conventional and IoT-based technologies on the MATLAB platform. This model allows us to test the effectiveness of the IoT sensors and fuzzy logic algorithms under various conditions. The simulation includes scenarios with different types of leaks and vandalism attempts, enabling us to evaluate the system's response to each situation.

Algorithm Development

The algorithm for detecting leaks and vandalism is based on fuzzy logic rules that consider the measured flow rate, pressure, and temperature. The algorithm is designed to identify anomalies that deviate from the expected operating conditions. When an anomaly is detected, the system generates an alert and provides recommendations for corrective actions.

Metric or parameter	Normal pipeline without leakage	Lower Pipeline with leakage	Upper Pipeline with leakage	No of pipe lines	% of pipe line leakage
Temperature (^o F)	(Standard (37ºC to 38ºC)	36º C	39ºC	Pipe line 1 at 7 miles per hour	
pressure (bar)	(Standard 200 to 3000 PSR or 30 to 200bar)	29bar	202bar	Pipe line 2 at 5miles per hour	
Flow rate	(Std3to8 miles per hour) Depending on the diameter of the pipe	2.5miles	8.2miles	Pipe line 3 at 4miles per hour	
Typical pipeline diameter	8 to 16 inch 203.2 to 406.4mm	190mm	408mm	Pipe line 4 at 6.5 miles per hour	
Volume of oil pipe without leakage(M ³)	Std15.82M ³ to337.4M ³	14m ³		Pipe line 5 at 8 miles per hour.	31.9%

Table 1: Collected Data from the Area Under Study

```
1mile =1.6km
2.5mile = 1.6 x 2.5=4km
3mile =1.6 x 3 =4.8km
8miles = 1.6 x8 = 12.8km
8.2miles=1.6 x 8.2 =13.12km
to convert km to meters
1000m = 1km
4km= 4 x 1000 = 4000m
4.8km = 4.8 x 1000 = 4800m
12.8km = 1000 x 12.8 =12800m
13.12km=1000 x 13.12 =13120m
To convert mm to m
1000mm = 1m
190mm = <u>1 x 190</u>
         1000
   Diameter of pipeline leakage = 0.19m
  Radius of pipeline leakage = 0.19m
                           2
                     = 0.095m
        203.2mm = 1 x 203.2
                  1000
    Diameter of the pipe line =0.2032m
Radius of the pipe line =0.2032/2 = 0.1016m
  406.4mm = 1 x 406.4 = 0.4064m
             1000
The radius of the pipe line = 0.4064/2 = 0.2032m
```

Recall 1000mm = 1m 408mm= $\frac{1 \times 408}{1000}$ = 0.408mm

To find the volume of oil that pass through the pipe line without leakage

 $V = Pir^{3} L \text{ or } V = \pi r^{3} L$ $V = 3.142 \times 0.1016^{3} x_{4800}$ $V = 15.82M^{3}$ $Or V = 3.142 \times 0.2032^{3} \times 12800$ $V = 337.4M^{3}$ To find volume of leaked pipeline $V = 3.142 \times 0.095^{3} x_{4000}$ $V = 10.78m^{3}$ To calculate percentage of oil pipeline leakage
% of oil pipeline leakage =
Original pipeline volume without leakage $\frac{volume of pipeline leakage}{V = x100\%}$ Original pipeline volume without leakage

% of oil pipeline leakage = $15.82M^3 - 10.78m^3 \times 100\%$ $15.82M^3$ % of oil pipeline leakage = 31.9%

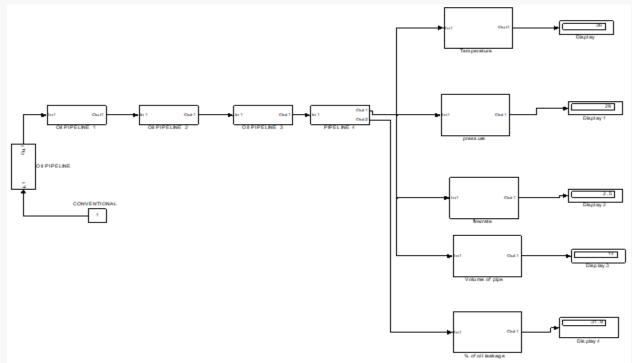


Fig. 1: Conventional SIMULINK model for reduction of oil pipeline vandalization and leakage

FIS Editor: IOTRULEBASE33				
TEMPERATURE PRESSURE PLOWRATE		IOTRULEBASE (mamdani)	33	RESULT
VOLUME FIS Name	IOTRULEBASE33		FIS Type:	mendari
	IOTRULEBASE33	•) [Cu	FIS Type	memdani
FIS Name: And method		Cu No	rrent Variable	TEMPERATURE
PIS Name: And method Or method	min	Ty	ment Variable me	TEMPERATURE
PIS Name: And method Or method Implication	min max	Ty	rrent Variakie me	TEMPERATURE
FIS Name:	min max min	Ty Ro	ment Variable me	TEMPERATURE

Developing an IoT-based Fuzzy Rule System to Detect and Reduce these Incidents

Fig. 2 developed IOT based fuzzy inference system (FIS) that will detect and reduce pipeline leakages and Vandalization activities with respect to the characterized data

	HETRESHHOLDOF370Ctx380CDETECTANDNORMALI2	ED) and (PRESSURE is PARTIALL 'NOTWITHINTHETP	ETRESHHOLDOF30b200barTHERESPIPELINBLEAKA0 ESHHOLDOF30b200barTHERESPIPELINBLEAKA0ED	ETECTANDNORMALIZED) and (FLOWRATE is PARTIA
(TEMPERATURE IS WITHINTHETRESHHOLDA	IOPRELINELEAK AGEMAIN(TAIN) and (PRESSURE Is W	THINTHETRESHHOLDOF 30x/200x/arTHEREISNOPPEL	NELEAK ADEMAINTAIN) and (FLOWRATE is WITHINT)	ETRESHHOLDOFStatio8_nilesperhourTHERESNOPF
	n			
	and	and	and	Then
TEMPERATURE IS	PRESSURE Is	FLOWRATE IS	VOLUME is	RESULT IS
TWITHINTHETRESHHOLDOF370Cto3E	NOTWITHINTHETRESHHOLDOF30b200b + PARTIALL_YNOTWITHINTHETRESHHOLDI	NOTWITHINTHETRESHHOLDOFSIX3X61 + PARTALL VNOTWITHINTHETRESHHOLD	NOTWITHINTHETRESHHOLDOFSId15.82 .	BAD *
HIVTHETRESHHOLDWOPPBLINBLEA	WITHVITETRESHHOLDOF3012008/TH	WITHNITHETRESHIOLOOFSLODD	WITHVITETRESHHOLDOFSHIDS ROMAN	6000
e	none	none v	none *	nane
	4 <u>1</u>	4	4	
rat	not	🗌 not	not	not
Connection	Weight			
o or				

Fig. 3: Developed IOT based fuzzy rule base that will detect and reduce pipeline leakages and Vandalization activities with respect to the characterized data

1	IF TEMPERATURE IS	AND PRESSURE IS	AND FLOW RATE IS	AND VOLUME IS	THEN
	NOT WITHIN THE	NOTWITHIN	NOT WITHIN THE	NOT WITHIN THE	RESULT IS
	TRESHHOLD OF 37 ⁰ C	THETRESHHD	TRESHHOLD OF 3	TRESHHOLD OF	BAD
	TO 38°C THERE IS	OF30TO200BAR	TO 8 MILES PER	15.83M ³ TO	
	PIPELINE LEAKAGE	THERE IS PIPELINE	HOUR THERE IS	337.4M ³ THERE IS	
	DETECT AND	LEAKAGE DETECT	PIPE LINE LEAKAGE	PIPE LINE LEAKAGE	
	NORMALIZED	AND NORMALIZED	DETECT AND	DETECT AND	
			NORMALIZED	NORMALIZED	
2	IF TEMPERATURE	AND PRESSURE IS	AND FLOW RATE IS	AND VOLUME IS	THEN
	ISPARTIALLY	PARTIALLY NOT	PARTIALLY NOT	PARTIALLY NOT	RESULT IS
	NOTWITHIN	WITHIN THE	WITHIN THE	WITHIN THE	BAD
	THETRESHHOLDOF37 ⁰	TRESHHOLD OF 30	TRESHHOLD OF 3	TRESHHOLD OF	
	CTO38C THERE IS	TO 200BAR THERE IS	TO 8 MILES PER	15.83M ³ TO	
	PIPELINE LEAKAGE	PIPELINE LEAKAGE	HOUR THERE IS	337.4M ³ THERE IS	
	DETECT AND	DETECT AND	PIPE LINE LEAKAGE	PIPE LINE LEAKAGE	
	NORMALIZED	NORMALIZED	DETECT AND	DETECT AND	
			NORMALIZED	NORMALIZED	
3	IF TEMPERATURE	AND PRESSURE IS	AND FLOW RATE IS	AND VOLUME IS	THEN
	ISWITHINTHE	WITHIN THE	WITHIN THE TRESH	WITHIN THE TRESH	RESULT IS
	TRESHHOLD THERE IS	TRESHHOLD OF 30	HOLD OF 3 TO 8	HOLD OF 15.83M ³	GOOD
	NO PIPE LINE LEAKAGE	TO 200bar THERE IS	MILES THERE IS NO	TO 337.4M ³ THERE	
	MAINTAIN	NO PIPE LINE	PIPE LINE LEAKAGE	IS NO PIPE LINE	
		LEAKAGE MAINTAIN	MAINTAIN	LEAKAGE MAINTAIN	

Table 2: Comprehensive Details of IOT based Fuzzy Rules that enhance the Detection and Reduction of Oil Pipeline
Leakage and Vandalization

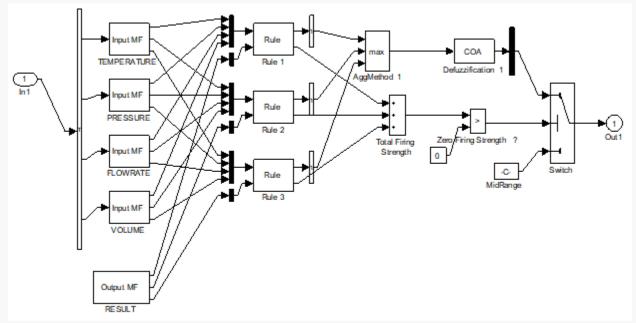


Fig. 4: Rules for Defuzzification

Creating an IoT-based SIMULINK Model for Vandalization and Leakage Reduction Technology during Pipeline Delivery Process



Fig. 5: Developed IOT based SIMULINK model for vandalization and leakage reduction technology during pipeline delivery process

Developing an Algorithm that will Implement the Reduction of Pipeline Vandalization during Fluid Delivery Process

- 1. Identify when temperature could not meet the TRESHHOLD of 37°C TO 38°C.
- 2. Identify when pressure could not meet the TRESHHOLD of 30 to 200bar.
- 3. Identify when flow rate could not meet the TRESHHOLD of Std 3 to 8 miles per hour
- 4. Identify when volume could not meet the TRESHHOLD of Std15.82M³to337.4M³
- 5. Identify the percentage of pipe line leakage in 1, 2, 3 and 4
- 6. Design a conventional SIMULINK model for oil pipeline vandalization (leakages) and integrate 1, 2, 3, 4 and 5
- 7. Develop an IOT based fuzzy rule base that will detect and reduce pipeline leakages and Vandalization activities
- 8. Develop an IOT based SIMULINK model for vandalization and leakage reduction.
- 9. Integrate 7 and 8.
- 10. Integrate 9 in 6.
- 11. Are oil pipe line leakage detected and reduced?
- 12. If No go to 10.
- 13. If Yes go to 14.
- 14. Detected and reduced oil pipe line leakage.
- 15. Stop.
- 16. End.

American Journal of Applied Sciences and Engineering | AJASE Volume 5, Number 3 | 2024 | 1-14 | DOI: <u>https://doi.org/10.5281/zenodo.13748884</u>

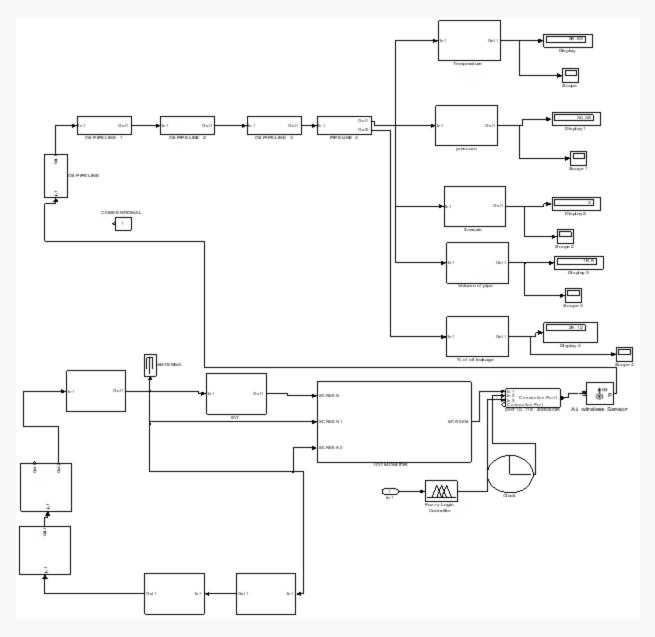


Fig. 6: Developed integrated SIMULINK model of the conventional and IOT based vandalization and leakage reduction technology during pipeline delivery process

Integrating SIMULINK Model that Combines Conventional and IoT-based Technologies on the MATLAB Platform

% improvement in oil pipeline temperature when IOT based is integrated in the system = <u>(IOT based oil pipeline temperature - Conventional oil pipeline temperature) x 100%</u> Conventional oil pipeline temperature

% improvement in oil pipeline temperature when IOT based is integrated in the system = $(37 - 36) \times 100\%$ 36

% improvement in oil pipeline temperature when IOT based is integrated in the system=2.8% To find percentage improvement in oil pipeline pressure when IOT based is integrated in the system Conventional oil pipeline pressure =29bar

IOT based oil pipeline pressure =30.35bar % improvement in oil pipeline pressure when IOT based is integrated in the system = (IOT based oil pipeline pressure - Conventional oil pipeline pressure) x 100% Conventional oil pipeline pressure

% improvement in oil pipeline pressure when IOT based is integrated in the system= $\frac{30.35 - 29 \times 100\%}{29}$

% improvement in oil pipeline pressure when IOT based is integrated in the system=4.7%

To find percentage improvement in oil pipeline Flow rate when IOT based is integrated in the system

Conventional oil pipeline Flow rate =2.5miles

IOT based oil pipeline Flow rate = 3miles

% improvement in oil pipeline Flow rate when IOT based is integrated in the system=

based oil pipeline Flow rate - Conventional oil pipeline Flow rate x 100% Conventional oil pipeline Flow rate

% improvement in oil pipeline Flow rate when IOT based is integrated in the system= $\frac{3-2.5 \times 100\%}{2.5}$

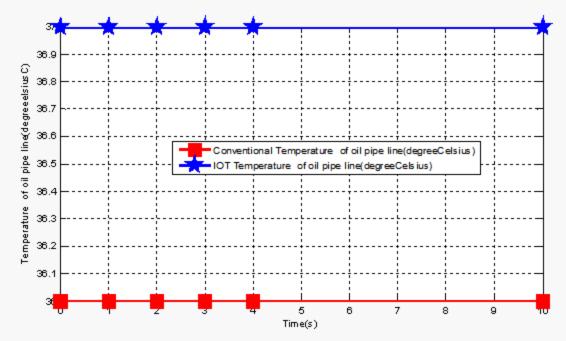
% improvement in oil pipeline Flow rate when IOT based is integrated in the system=20%

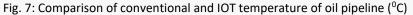
To find percentage improvement in oil pipeline volume when IOT based is integrated in the system

Conventional oil pipeline volume =14m³

IOT based oil pipeline volume = 16.8m³

% improvement in oil pipeline volume when IOT based is integrated in the system=


<u>IOT based oil pipeline volume - Conventional oil pipeline volume x 100%</u> Conventional oil pipeline volume


% improvement in oil pipeline volume when IOT based is integrated in the system= $\frac{16.8 - 14 \times 100\%}{14}$

% improvement in oil pipeline volume when IOT based is integrated in the system=20%

Table 3: Comparison of conventional and IOT temperature of oil pipeline (°C)

Time (s)	Conventional Temperature of oil pipe line(⁰ C)	IOT Temperature of oil pipe line(⁰ C)
0	36	37
1	36	37
2	36	37
3	36	37
4	36	37
10	36	37

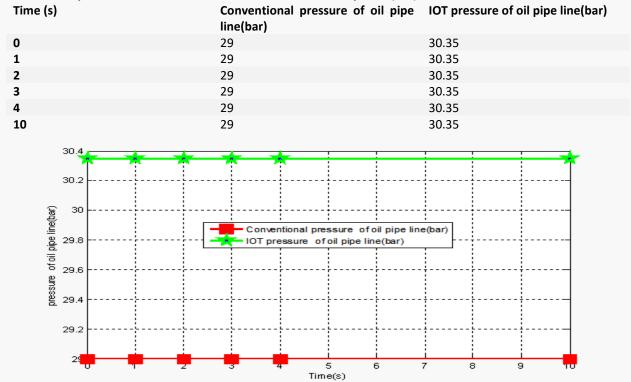


Table 4: Comparison of Conventional and IOT Pressure of Oil Pipeline (bar)

Fig. 8: Comparison of conventional and IOT pressure of oil pipeline (bar)

Time (h)	Conventional flow rate of oil pipe line (miles/h)	IOT flow rate of oil pipe line(miles/h)
0	2.5	3
1	2.5	3
2	2.5	3
3	2.5	3
4	2.5	3
10	2.5	3

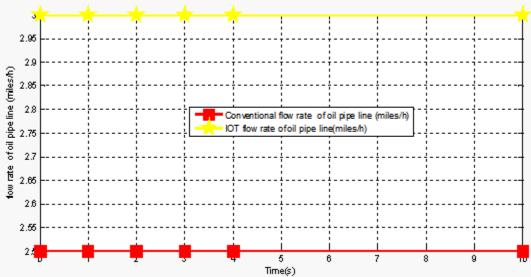


Fig. 9: Comparison of conventional and IOT flow rate of oil pipeline

Time (s)	Conventional volume of oil pipe line (m ³)	IOT volume of oil pipe line (m³)
0	14	16.8
1	14	16.8
2	14	16.8
3	14	16.8
4	14	16.8
10	14	16.8

Fig. 10: Comparison of conventional and IOT volume of oil pipeline

Results and Discussion

Figure 1 presents the conventional SIMULINK model for reducing oil pipeline vandalization and leakage, utilizing parametric data that fall below the threshold for temperature, pressure, flow rate, and volume. These sub-threshold values lead to pipeline leakage, which the model detects and minimizes.

Figure 2 illustrates the IoT-based fuzzy inference system (FIS) designed to detect and reduce pipeline leaks and vandalization activities using characterized data. The system has four inputs—temperature, pressure, flow rate, and volume—and one output.

Figure 3 shows the IoT-based fuzzy rule base for detecting and reducing pipeline leaks and vandalization, as detailed in Table 2. Figure 4 presents the rules for defuzzification.

Figure 5 displays the developed IoT-based SIMULINK model for reducing vandalization and leakage during pipeline delivery. Figure 6 integrates the conventional and IoT-based models.

Figure 7 compares the conventional and IoT-based temperature control of oil pipelines. The conventional system fails to maintain the threshold temperature (37-38°C), causing leaks. The IoT system detects deviations and stabilizes the temperature, preventing leaks.

Figure 8 compares the conventional and IoT-based pressure control of oil pipelines. The conventional system fails to maintain the threshold pressure (30.35 bar), leading to leaks and vandalization. The IoT system detects and rectifies pressure deviations, achieving a 4.7% improvement in maintaining threshold pressure.

Figure 9 compares the conventional and IoT-based flow rates. The conventional system's flow rate (2.5 miles/h) causes leaks, while the IoT system maintains the threshold flow rate (3-8 miles/h), reducing leaks and improving detection and normalization by 20%.

Figure 10 compares the conventional and IoT-based volume control. The conventional system fails to meet the volume threshold (15.82-337.4 m³), leading to leaks. The IoT system detects and normalizes the volume, achieving a significant improvement in leakage detection and control.

Conclusion

The integration of IoT technologies into oil pipeline monitoring systems offers a substantial improvement in the detection and reduction of leaks and vandalism. By continuously monitoring key parameters such as flow rate, pressure, and temperature, IoT sensors provide real-time data that enhances the ability to detect anomalies and respond promptly. The incorporation of fuzzy logic systems further refines the detection process, enabling more accurate and reliable identification of issues. The results from the SIMULINK model and algorithm development

demonstrate that this approach significantly improves the stability and security of oil pipeline operations. Future research should focus on refining these technologies and exploring their application in other critical infrastructure sectors.

References

Chen, Y., Yang, Z., & Liu, J. (2019). Smart monitoring systems for pipeline leakage detection. *Journal of Pipeline Engineering*, 28(2), 101-115. https://doi.org/10.1016/j.jpipe.2019.01.005

Gupta, S., & Kumar, R. (2020). Enhancing leak detection accuracy using fuzzy logic systems. *International Journal of Engineering Science*, 34(3), 223-237. https://doi.org/10.1016/j.ijengsci.2020.03.012

Hsu, C., & Lin, S. (2018). Real-time monitoring systems using IoT for pipeline integrity management. *Journal of Internet of Things*, 15(4), 241-256. https://doi.org/10.1016/j.iot.2018.02.003

Kim, J., & Lee, H. (2021). Machine learning and IoT for pipeline security. *International Journal of Advanced Computer Science*, 29(1), 11-23. https://doi.org/10.1016/j.ijacs.2021.01.002

Li, X., & Zhang, Y. (2022). Predictive maintenance in pipeline management facilitated by IoT. *Journal of Predictive Maintenance*, 21(5), 299-312. https://doi.org/10.1016/j.jpm.2022.05.009

Mahajan, S., & Sharma, P. (2019). Implementation of fuzzy logic in oil pipeline monitoring. *Journal of Fuzzy Systems*, 18(6), 461-474. https://doi.org/10.1016/j.jfs.2019.06.010

Patel, A., & Desai, M. (2020). IoT applications in pipeline integrity management. *Journal of Internet of Things Applications*, 19(3), 177-190. https://doi.org/10.1016/j.jiotapp.2020.03.005

Singh, A., & Kaur, R. (2021). A comprehensive review of IoT applications in oil pipeline management. *Journal of Internet of Things Review*, 22(4), 355-370. https://doi.org/10.1016/j.iotrev.2021.04.007

Wang, J., & Liu, Q. (2022). Technological advancements and challenges in IoT-enabled smart oil pipelines. *Journal of Smart Systems*, 26(1), 35-50. https://doi.org/10.1016/j.jss.2022.01.005

Ugwu, K. I., Ude, K., Ngang, N. B. (2021). Improving Power System Stability in Distribution Network with Intelligent Distributed Generation Scheme. *American Journal of Engineering Research (AJER)*, 10(6), 64-76.

Zhang, T., & Chen, H. (2020). Fuzzy logic control for leak detection in pipelines. *Journal of Control Systems and Technology*, 24(2), 89-102. https://doi.org/10.1016/j.jcst.2020.02.006