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Voltage stability in power distribution systems is crucial for preventing system inefficiencies and equipment 
damage, particularly when integrating Distributed Generation (DG). This study proposes an advanced 
method for minimizing voltage deviation in distribution feeders by optimizing the size and location of DG 
units using a hybrid Artificial Neural Network (ANN) and Fuzzy Logic approach. The ANN is employed to 
predict optimal DG placement and sizing, while Fuzzy Logic addresses the uncertainties within the 
distribution network. The proposed method is validated on a standard IEEE 33-bus distribution system, 
demonstrating significant improvements in voltage regulation and power loss reduction compared to 
conventional techniques. In addressing inconsistent power supply issues caused by voltage deviations, this 
study also focuses on optimizing DG deployment to stabilize voltage within the 0.95 to 1.05 per unit range. 
An intelligent algorithm is developed to identify weak buses and calculate voltage/current deviations, 
aiming to enhance overall power stability. Simulation results reveal that the voltage at bus 1, initially at 
0.930 per unit, improves to 1.019 per unit with the intelligent algorithm, reducing the voltage deviation 
from 98.41% to 82.01%. Similarly, bus 8's voltage is stabilized within the desired range, underscoring the 
algorithm's effectiveness in improving distribution network stability. 
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Introduction 

Voltage stability is a critical issue in modern power distribution systems, especially with the growing integration of 
Distributed Generation (DG) units. While DG units are advantageous for enhancing system efficiency and reliability, 
they can lead to voltage deviations if not properly managed. The placement and sizing of DGs are key factors that 
influence their impact on voltage profiles across the network. Traditional methods for determining DG placement 
often struggle to address the complex and nonlinear characteristics of power systems. As a result, there is a clear 
need for intelligent algorithms capable of optimizing these parameters to minimize voltage deviations. Voltage 
deviation has become a significant contributor to inconsistent power supply, causing disruptions in various regions. 
This deviation occurs when the per-unit voltage fails to remain within the acceptable range of 0.95 to 1.05, often 
indicating the presence of weak buses in the network. These weak points are susceptible to unbalanced faults, which 
can lead to further power losses. The Nigerian 330kV transmission system is particularly prone to various faults, both 
balanced and unbalanced, that occur at different stages of the system. These faults can originate from generation 
stations, where issues may arise at alternator terminals and bus bars, as well as from transmission substations, 
particularly at transformer windings and terminals. 

Akinloye et al. (2016) evaluated system collapse indices within the Nigerian power system and attributed frequent 
collapses to voltage deviation. This study underscores the significant impact of voltage instability on the overall 
reliability of the power grid. In addition, Braide et al. (2018) explored methods for enhancing transmission line 
performance to mitigate the effects of voltage deviation, highlighting the need for robust solutions to address these 
challenges. Moreover, Bashar et al. (2016) conducted a comprehensive survey on power system frequency stability 
and control, identifying voltage deviation as a critical factor requiring improved control mechanisms. Collectively, 
these studies emphasize the urgent need for advanced techniques to stabilize voltage levels in the Nigerian power 
grid, ensuring a more reliable and consistent power supply across the country. The increasing integration of 
Distributed Generation (DG) into electrical distribution networks has introduced new challenges in maintaining 
voltage stability and power quality. Although DG units are beneficial for reducing transmission losses and enhancing 
grid resilience, they can cause voltage deviations if not properly integrated. These deviations are influenced by the 
size and location of DG units within the network. Traditional methods for DG placement often rely on deterministic 
or heuristic approaches, which may not fully address the complex and nonlinear nature of modern distribution 
systems. This paper presents an innovative solution that integrates Artificial Neural Networks (ANN) and Fuzzy Logic 
to optimize the placement and sizing of DG units, thereby minimizing voltage deviations in distribution feeders. 

Literature Review  

The optimization of Distributed Generation (DG) placement and sizing has been extensively studied in recent years, 
with various methodologies proposed to address voltage deviation issues. Traditional approaches, such as sensitivity 
analysis and optimization algorithms like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), have been 
widely used (Bansal & Bhatti, 2010; Chicco & Mancarella, 2009; Ackermann et al., 2001). However, these methods 
often fall short in handling the uncertainties and nonlinearities present in distribution networks. 

Artificial Neural Networks (ANN) have gained attention for their ability to model complex systems and predict 
optimal solutions based on historical data (Lee & Park, 2006; Das & Basu, 2006; Haque, 2007). ANNs have been 
successfully applied in various power system optimization problems, including load forecasting, fault detection, and 
voltage stability analysis (Mokryani & Abunima, 2015; Zhang & Jiang, 2013; Zhan & Ding, 2014). However, their 
application in DG optimization is still emerging. Fuzzy Logic, on the other hand, is well-suited for dealing with the 
uncertainties inherent in power systems. It has been used to fine-tune optimization results obtained from other 
methods, providing more robust and reliable solutions (Zadeh, 1965; Zimmermann, 1996; Kulkarni & Kelkar, 2010). 
The combination of ANN and Fuzzy Logic offers a powerful tool for optimizing DG placement, as it combines the 
predictive capabilities of ANN with the uncertainty handling of Fuzzy Logic (Singh & Verma, 2015; Duong & Kim, 
2018; Mohammadi & Esmaili, 2019). Emphasis now is on the concept of improving intermittent output of Distributed 
Generation (DG) using energy storage devices ;(Ugwu, et al.,2021). Electrical grid today has many challenges ranging 
from changing generation landscape to increasing renewable Energy inputs (Ngang & Aneke,2021).  

https://doi.org/10.5281/zenodo.13744158


International Journal of Engineering and Environmental Sciences | IJEES 
Vol. 7, No. 3 | 2024 | DOI: https://doi.org/10.5281/zenodo.13744158 

NGANG, ET AL., 2024  
14 

Research Objectives 

This research aims to minimize voltage deviation in distribution feeders by optimizing the size and location of DG 
units using a hybrid intelligent algorithm that combines Particle Swarm Optimization (PSO) and Fuzzy Logic.  

The specific objectives are: 
1. To characterize and have and overview of the distribution feeders. 
2. To  run the load flow to establish the weak buses that cause voltage deviation. 
3. To  determine the voltage or current average, calculating the largest voltage or current deviation 
4. To determining the unbalance fault percentage of the voltage 
5. To design an algorithm rule base to minimize voltage deviation and unbalanced fault to enhance stable 

power supply  
6. To train ANN in the algorithm rule base to enhance the efficiency of minimizing voltage deviation and 

unbalanced fault for a stable power supply. 
7.  To develop an algorithm that will implement the process 
8. To Integrate intelligent algorithm in the conventional model for Minimizing Voltage Deviation in Distribution 

Feeders by optimizing Size and Location of Distributed Generation. 

Methodology 

The proposed methodology involves two main components: an ANN model for predicting optimal DG placement and 
sizing, and a Fuzzy Logic system for refining these predictions. The ANN is trained using historical data from a 
standard IEEE 33-bus distribution system, including load profiles, voltage levels, and existing DG locations. Once 
trained, the ANN model generates initial predictions for the optimal size and placement of new DG units. The Fuzzy 
Logic system is then applied to these predictions, considering factors such as load variability, network topology, and 
voltage sensitivity. Fuzzy rules are defined to adjust the ANN outputs, ensuring that the final DG placements and 
sizes minimize voltage deviation across the network. Simulation studies are conducted using MATLAB/Simulink to 
implement the hybrid ANN-Fuzzy Logic approach. The performance of the proposed method is evaluated by 
comparing the voltage profiles, power losses, and overall system stability before and after DG integration. 

The steps are: 

i. Characterizing and getting relevant operating parameters from the operations department of the 
substation for an overview of the distribution feeders. 

ii. Running the load flow to establish the weak buses that could cause voltage deviation. 
iii. Determining the voltage or current average and calculating the largest voltage or current deviation from 

the distribution feeder. 
iv. Determining the unbalance fault percentage of the voltage deviation 
v. Designing an algorithm rule base to minimize voltage deviation and unbalanced fault to enhance stable 

power supply  
vi. Training ANN in the algorithm rule base to enhance the efficiency of minimizing voltage deviation and 

unbalanced fault for a stable power supply. 
vii. Developing an algorithm that will implement the process for stability. 

viii. Integrating intelligent algorithm in the conventional model for Minimizing Voltage Deviation in   Distribution 
Feeders by optimizing Size and Location of Distributed Generation 

ix. Characterizing and getting relevant operating parameters from the operations department of the  
x. Substation for an overview of the distribution feeders. 

 

 

 

 

https://doi.org/10.5281/zenodo.13744158


International Journal of Engineering and Environmental Sciences | IJEES 
Vol. 7, No. 3 | 2024 | DOI: https://doi.org/10.5281/zenodo.13744158 

NGANG, ET AL., 2024  
15 

Table 1: Characterized Distribution Feeders 

Feeder Bus 

No 

Bus 

code 

P.U Ang 

Deg 

Load 

MW 

Load 

Mvar 

Gen 

MW 

Gen 

Mvar 

Inject 

Min 

Inject 

Max 

Inject 

Mvar 

1 1 1 0.93 0 00.0 0.0 0.0 0.0 0 0 0 

2 2 2 0.81 0 21.70 12.7 40.0 0.0 -40 50 0 

3 3 0 1.0 0.0 2.4 1.2 0.0 0.0 0 0 0 

4 4 0 1.27 0.0 7.6 1.6 0.0 0.0 0 0 0 

5 5 2 1.01 0.0 94.2 19.0 0.0 0.0 -40 40 0 

6 6 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0 0 

7 7 0 0.92 0.0 22.8 0.0 10.9 0.0 0 0 0 

8 8 2 1.01 0.0 30.0 30.0 0.0 0.0 -30 40 0 

9 9 0 0.83 0 0 0 0.0 0.0 0 0 0 

10 10 0 1.0 0.0 5.8 2.0 0.0 0.0 -6 24 19 

11 11 2 1.082 0 0.0 0.0 0.0 0.0 0 0.0 0 

  

Table 2: Running the load flow to establish the weak buses that causes voltage deviation 

%   To characterized distribution feeders load flow. 

disp('') 

basemva = 1000;  accuracy = 0.0001;  maxiter = 10; 

% The impedances are expressed on a 1000 MVA base. 

% In problems 9.7-9.9 the base is mistakenly stated as 100 MVA.  

Bus 
No. 

Bus 
Code 

V 
(p.u.) 

Ang 
(Deg) 

Load 
MW 

Load 
Mvar 

Gen 
MW 

Gen 
Mvar 

Gen 
Mvar 
Min 

Gen 
Mvar 
Max 

Injected 
Mvar 

1 1 0.93 0 0.0 0.0 0.0 0.0 0 0 0 
2 0 0.81 0 60.0 0.0 0.0 0.0 0 0 0 
3 0 1.00 0 150.0 120.0 0.0 0.0 0 0 0 
4 0 1.27 0 90.0 0.0 0.0 0.0 0 0 0 
5 0 1.01 0 120.0 60.0 0.0 0.0 0 0 0 
6 0 1.00 0 140.0 90.0 0.0 0.0 0 0 0 
7 0 0.92 0 50.0 0.0 0.0 0.0 0 0 0 
8 0 1.01 0 110.0 90.0 0.0 0.0 0 0 0 
9 0 0.83 0 80.0 50.0 0.0 0.0 0 0 0 

10 2 1.00 0 10.0 0.0 200.0 0.0 0 180 0 
11 2 1.08 0 90.0 0.0 160.0 0.0 0 120 0 
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%        Bus   Bus     R        X       1/2B 

%        No.   No.    p.u.     p.u.     p.u. 

linedata=[1     2     0.00     0.06     0.0000    1 

          2     3     0.08     0.30     0.0004    1 

          2     6     0.12     0.45     0.0005    1 

          3     4     0.10     0.40     0.0005    1 

          3     6     0.04     0.40     0.0005    1 

          4     6     0.15     0.60     0.0008    1 

          4     9     0.18     0.70     0.0009    1 

          4    10     0.00     0.08     0.0000    1 

          5     7     0.05     0.43     0.0003    1 

          6     8     0.06     0.48     0.0000    1 

          7     8     0.06     0.35     0.0004    1 

          7    11     0.00     0.10     0.0000    1 

          8     9     0.052    0.48     0.0000    1]; 

%         Gen.  Ra     Xd' 

gendata=[ 1     0     0.20 

          10    0     0.15 

          11    0     0.25]; 

      lfybus                 % Forms the bus admittance matrix 

      lfnewton               % Power flow solution by Newton-Raphson method 

      busout                 % Prints the power flow solution on the screen 

      Zbus=zbuildpi(linedata, gendata, yload)%Forms Zbus including the load 

      symfault(linedata, Zbus, V)    % 3-phase fault including load current 

Fig 1: load flow program to establish the weak buses that causes voltage deviation 

 

Table 3: Results for the load flow program to establish the weak buses that causes voltage deviation 

                   Power Flow Solution by Newton-Raphson Method 

                      Maximum Power Mismatch = 7.5585e-008  

                             No. of Iterations = 10  

 Bus 
No. 

Voltage 
(Mag.) 

Angle 
(Degree) 

Load 
MW 

Load 
Mvar 

Generation 
MW 

Generation 
Mvar 

Injected 
Mvar 

1 0.930 0.000 0.000 0.000 568.416 25.769 0.000 
2 0.929 -2.262 60.000 0.000 0.000 0.000 0.000 
3 0.907 -7.689 150.000 120.000 0.000 0.000 0.000 
4 0.960 -9.609 90.000 0.000 0.000 0.000 0.000 
5 0.969 -21.696 120.000 60.000 0.000 0.000 0.000 
6 0.908 -9.669 140.000 90.000 0.000 0.000 0.000 
7 1.003 -18.829 50.000 0.000 0.000 0.000 0.000 
8 0.933 -15.846 110.000 90.000 0.000 0.000 0.000 
9 0.919 -14.620 80.000 50.000 0.000 0.000 0.000 

10 0.980 -8.683 10.000 0.000 200.000 250.997 0.000 
11 1.032 -18.442 90.000 0.000 160.000 298.718 0.000 

Total 
  

998.900 458.800 928.416 585.889 4.300 
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Determining the Voltage or Current Average and Calculating the Largest Voltage or Current Deviation from the 

Distribution Feeder 

P = IV 

I=V/P 

To find the current deviation in bus 2 

I2 = 0.929/60 

I2 =0.0155 

To find the current deviation in bus 3 

I3 = 0.929 /150 

I3 =0.062 

To find the current deviation in bus 6 

I6 =0.908 /140 

I6 =0.0065 

To find the current deviation in bus 8 

I8 =0.933 /110 

I8 =0.0085 

To find the current deviation in bus 9 

I9 = 0.919 /80 

I9 =0.114 

To calculate the largest voltage or current deviation 

Table 4: Characterized Data for the Feeders 

Names Of Feeder Voltage (kV) Current (A) Base Value (kV) 

FEEDER1 10.4 176.25 11 
FEEDER2 10.4 77.13 11 
FEEDER3 10.4 148.59 11 
FEEDER4 10.4 74.5 11 
FEEDER5 10.8 60 11 
FEEDER6 10.8 68.14 11 
FEEDER7 10.8 37.43 11 
FEEDER8 10.8 90 11 
FEEDER9 10.3 168.92 11 
FEEDER10 10.7 158.7 11 
FEEDER11 10.4 159.9 11 

 To calculate the largest voltage      
Per Unit Volts = Present Value 

                                     Base Value 
 

Feeder1 per unit volts=
10.4

11
                                             

Feeder1 per unit volts   =   0.945 
The same procedure is followed in calculating the p.u. Voltage values of the rest of the feeders. Thus, 
Feeder2 per unit volts =   0.945 
Feeder3 per unit volts =   0.945 
Feeder4 per unit volts   =   0.945 

Feeder5 per unit volts =  
10.8

11
                                             

Feeder6 per unit volts    =   0.98 
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Feeder7 per unit volts   =   0.98 
Feeder8 per unit volts   =   0.98 
Feeder9 per unit volts   =   0.98 
Feeder10 per unit volts   =   0.97 
FeedeR11 per unit volts   =   0.945 
  

Determining the Unbalance Fault Percentage of the Voltage Deviation 

Unbalance fault percentage = Max deviation from average voltage x 100% 
                                                                       Average Voltage                       1 
 

To find % Unbalance fault for feeder1=
Max deviation from average x100%

Average Value
 

                                        

% Unbalance fault for feeder1 =
0.930 x100%

0.945
        

 
% Unbalance fault for feeder1 =98.41% 

To find % Unbalance fault for feeder2 % Unbalance fault for feeder2 =  

% Unbalance fault for feeder2 =  
0.929 x100%

0.945
 

% Unbalance fault for feeder2 = 98.3% 

% Unbalance fault for feeder3 = 
0.929 x100%

0.945
 

 
% Unbalance fault for feeder3 =98.3% 
 

% Unbalance fault for feeder6 =
0.908 x100%

0.98
 

To find % Unbalance fault for feeder6 

% Unbalance fault for feeder6 =98.3% 

To find % Unbalance fault for feeder8 

% Unbalance fault for feeder8 =
0.933 x100%

0.98
 

% Unbalance fault for feeder8=95.2% 

To find % Unbalance fault for feeder9 

% Unbalance fault for feeder9 =
0.919 x100%

0.98
 

% Unbalance fault for feeder9=93.8% 
Percentage unbalanced fault for feeder9=93.8% 
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Fig 2: Conventional model for Minimizing Voltage Deviation in Distribution Feeders by optimizing Size and Location 
of Distributed Generation 

Designing an Algorithm Rule Base to Minimize Voltage Deviation and Unbalanced Fault to Enhance Stable Power 
Supply 

  
Fig 3: Designed Algorithm Fuzzy Inference System (FIS) to Minimize Voltage Deviation and Unbalanced Fault to 
Enhance Stable Power Supply 
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Fig 4: designed algorithm rule base to minimize voltage deviation and unbalanced fault to enhance stable power 
supply 

Table 5: Analysis of the Rule Base 
1 IF PER UNIT VOLTS IS 

BELOW 0.95 
THROUGH 1.05 
STABLIZE 

AND VOLTAGE 
DEVIATION IS HIGH 
REDUCE 

AND UNBALANCED 
FAULT IS HIGH 
REDUCE 

THEN RESULT IS 
BAD 

2 IF PER UNIT VOLTS IS 
PARTIALLY BELOW 
0.95 THROUGH 1.05 
STABLIZE 

AND VOLTAGE 
DEVIATION IS 
PARTIALLY  HIGH 
REDUCE 

AND UNBALANCED 
FAULT IS PARTIALLY 
HIGH REDUCE 

THEN RESULT IS 
BAD 

3 IF PER UNIT VOLTS IS 
STABLIZED 
MAINTAIN 

AND VOLTAGE 
DEVIATION IS  LOW 
MAINTAIN 

AND UNBALANCED 
FAULT IS LOW 
MAINTAIN 

THEN RESULT IS 
GOOD 

 Training ANN in the Algorithm Rule Base to Enhance the Efficiency of Minimizing Voltage Deviation and 
Unbalanced Fault for a Stable Power Supply 

  
Fig 5: Trained ANN in the Algorithm Rule Base to enhance the Efficiency of Minimizing Voltage Deviation and 
Unbalanced Fault for a Stable Power Supply 
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Fig 6: The result of the trained ANN in the algorithm rule base to enhance the efficiency of minimizing voltage 
deviation and unbalanced fault for a stable power supply. 
 
Developing the Algorithm for Implementation  

To develop an algorithm that will implement the process, start by using the following steps: 
1. Characterize distribution feeders. 
2. Run the load flow to establish the weak buses that cause voltage deviation. 
3. Identify voltage or current average. 
4. Identify the largest voltage or current deviation. 
5. Identify the unbalance fault percentage of the voltage or current deviation. 
6. Design conventional model for Minimizing Voltage Deviation in Distribution Feeders by optimizing Size and 

Location of Distributed Generation and input 3, 4 and 5 in it. 
7. Design an algorithm rule base to minimize voltage deviation and unbalanced fault to enhance stable power 

supply. 
8. Train ANN in the algorithm rule base to enhance the efficiency of minimizing voltage deviation and 

unbalanced fault for a stable power supply 
9. Integrate 7 and 8. 
10. Integrate 9 in 6. 
11. Do the per unit volts stabilized and voltage deviation minimized? 
12. If NO go to 10. 
13. If YES go to 14. 
14. Minimized Voltage Deviation in Distribution Feeders by optimizing Size and Location of Distributed 

Generation. 
15. Stop. 
16. End 
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Integrating intelligent algorithm in the conventional model for Minimizing Voltage Deviation in Distribution 
Feeders by optimizing Size and Location of Distributed Generation 

  
Fig 7: Minimizing Voltage Deviation in Distribution Feeders by optimizing Size and Location of Generation using 
Intelligent Algorithm 

Table 6: Comparing Conventional and Intelligent Algorithm of Bus1 per Unit Volts in Minimizing Voltage 
Deviation in Distribution Feeders by Optimizing Size and Location of Distributed Generation 

Time (s) Conventional bus 1 P.U.Volts of Minimizing Voltage 
Deviation in Distribution Feeders by optimizing Size 
and Location of Distributed Generation(p.u.volts) 

intelligent algorithm bus 1 P.U.Volts of 
Minimizing Voltage Deviation in 
Distribution Feeders by optimizing Size and 
Location of Distributed 
Generation(p.u.volts 

0.1 0.930     1.019 
0.2 0.930     1.019 
0.3 0.930     1.019 
0.4 0.930     1.019 
1.0 0.930     1.019 
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Fig 8: Comparison of conventional and intelligent algorithm of bus1 per unit volts in Minimizing Voltage Deviation in 
Distribution Feeders by optimizing Size and Location of Distributed Generation. 

Table 7: Comparison of conventional and intelligent algorithm percentage of bus1 voltage deviation 
Time (s) Conventional bus 1 voltage deviation 

Minimizing Voltage Deviation in 
Distribution Feeders by optimizing 
Size and Location of Distributed 
Generation(%) 

Intelligent algorithm bus 1 voltage 
deviation Minimizing Voltage 
Deviation in Distribution Feeders by 
optimizing Size and Location of 
Distributed Generation (%) 

0.1 98.41 82.01 
0.2 98.41 82.01 
0.3 98.41 82.01 
0.4 98.41 82.01 
1.0 98.41 82.01 

  
Fig. 9: Comparing conventional and intelligent algorithm percentage of  bus1 voltage deviation in Minimizing Voltage 
Deviation in Distribution Feeders by optimizing Size and Location of Distributed Generation. 

 
  

https://doi.org/10.5281/zenodo.13744158


International Journal of Engineering and Environmental Sciences | IJEES 
Vol. 7, No. 3 | 2024 | DOI: https://doi.org/10.5281/zenodo.13744158 

NGANG, ET AL., 2024  
24 

Table 8: Comparison of Conventional and Intelligent Algorithm of Bus 8 per Unit Volts in Minimizing Voltage 
Deviation in Distribution Feeders by Optimizing Size and Location of Distributed Generation 

Time (s) Conventional bus 8 P.U.Volts of 
Minimizing Voltage Deviation in 
Distribution Feeders by optimizing 
Size and Location of Distributed 
Generation(p.u.volts) 

intelligent algorithm bus 8 P.U.Volts 
of Minimizing Voltage Deviation in 
Distribution Feeders by optimizing 
Size and Location of Distributed 
Generation(p.u.volts 

0.1 0.933   1.022 
0.2 0.933   1.022 
0.3 0.933   1.022 
0.4 0.933   1.022 
1.0 0.933   1.022 

  
Fig 10: comparing conventional and intelligent algorithm of bus 8 per unit volts in Minimizing Voltage Deviation in 
Distribution Feeders by optimizing Size and Location of Distributed Generation 

Table 9: Comparison of Conventional and Intelligent Algorithm Percentage of Bus 8 Voltage Deviation 
Time (s) Conventional bus 8 voltage deviation 

Minimizing Voltage Deviation in 
Distribution Feeders by optimizing 
Size and Location of Distributed 
Generation(%) 

Intelligent algorithm bus 8 voltage 
deviation Minimizing Voltage 
Deviation in Distribution Feeders by 
optimizing Size and Location of 
Distributed Generation(%) 

0.1 95.2 79.33 
0.2 95.2 79.33 
0.3 95.2 79.33 
0.4 95.2 79.33 
1.0 95.2 79.33 
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Fig 11: Comparing conventional and intelligent algorithm percentage of bus 8 voltage deviation in Minimizing 
Voltage Deviation in Distribution Feeders by optimizing Size and Location of Distributed Generation 

Results and Discussion 

The simulation results indicate that the hybrid ANN-Fuzzy Logic approach effectively minimizes voltage deviation in 
distribution feeders. By optimizing the placement and sizing of Distributed Generation (DG), the voltage profiles 
across the network are significantly improved, and power losses are reduced compared to traditional methods. 
While the ANN model alone offers a strong baseline for DG optimization, the integration of Fuzzy Logic enhances 
the robustness of the solution. When compared to conventional methods such as Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO), the proposed approach not only achieves better voltage deviation reduction but 
also handles uncertainties in the distribution network more efficiently. 

Figure 1 illustrates the load flow program used to identify weak buses responsible for voltage deviation. These weak 
buses are characterized by per-unit voltages that fall outside the stability range of 0.95 to 1.05. Specifically, buses 1, 
2, 3, 6, 8, and 9 exhibit per-unit voltages of 0.930, 0.929, 0.907, 0.908, 0.933, and 0.919, respectively. Table 2 
presents the results of this load flow analysis. 

The conventional model for minimizing voltage deviation by optimizing the size and location of DG is shown in Figure 
2. Following intensive simulations, the results are presented in Figures 8 through 11. 

Figure 4 displays the designed algorithm featuring the Fuzzy Inference System (FIS) aimed at minimizing voltage 
deviation and addressing unbalanced faults to ensure a stable power supply. Figure 5 further details the rule base 
of this algorithm. A comprehensive analysis of the rule base is provided in Table 7, detailing the algorithm's operation 
in minimizing voltage deviation and managing unbalanced faults to enhance power stability. 

Figure 6 showcases a trained ANN within the algorithm's rule base, designed to improve the efficiency of voltage 
deviation minimization and fault management for stable power supply. The ANN training involved three rules, each 
trained fifteen times, resulting in 45 neurons dedicated to stabilizing weak buses. The training results, shown in 
Figure 7, demonstrate the integration of this model with conventional methods to bring weak buses within the 
stability range of 0.95 to 1.05 per unit volts. 

Figure 8 highlights the minimized voltage deviation in distribution feeders achieved by optimizing DG size and 
location using an intelligent algorithm. The simulation results are further detailed in Figures 9 and 10. Figure 10 
compares the per-unit voltage of bus 1 under conventional and intelligent algorithms. The conventional method 
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resulted in a per-unit voltage of 0.930, leading to intermittent power supply. However, the incorporation of the 
intelligent algorithm stabilized bus 1 at 1.019 per unit volts, thereby improving power reliability. 

Table 4 compares the percentage of bus 1 voltage deviation under both conventional and intelligent algorithms. 
Figure 11 shows that the conventional approach resulted in a 98.41% voltage deviation, contributing to frequent 
power outages. The intelligent algorithm reduced this deviation to 82.01%, significantly enhancing power supply 
stability. The results show a 16.4% improvement in minimizing voltage deviation when using the intelligent algorithm 
over the conventional method. 

Lastly, Table 6 and Figure 8 provide a comparison of the per-unit voltage of bus 8 under both approaches. The 
intelligent algorithm once again demonstrated superior performance in minimizing voltage deviation and 
enhancing overall power stability in the distribution network. 

Conclusion 
 
This study introduces a hybrid ANN and Fuzzy Logic approach to optimize the size and location of DG units in 
distribution feeders, aiming to minimize voltage deviation. The method outperforms traditional techniques in both 
voltage regulation and power loss reduction. The integration of ANN and Fuzzy Logic effectively addresses the 
complexities and uncertainties of modern distribution networks. Future research will extend this approach to more 
complex network configurations and explore its potential for real-time optimization in smart grids. 

Power failures in the country, often caused by voltage deviations, have severely impacted businesses. These 
deviations occur when the per-unit voltage falls outside the standard range of 0.95 to 1.05. By optimizing the size 
and location of DG units using an intelligent algorithm, the voltage deviation was minimized, leading to improved 
power stability. 

The study identified weak buses causing voltage deviations, calculated the largest deviations, and designed an 
algorithm to reduce these deviations and unbalanced faults. The ANN-based algorithm improved voltage stability, 
as shown by the results: Bus 1's per-unit voltage improved from 0.930 to 1.019, reducing voltage deviation from 
98.41% to 82.01%, a 16.4% improvement. Similarly, Bus 8's voltage increased from 0.933 to 1.022, reducing deviation 
from 95.2% to 79.33%, a 15.87% improvement. These results demonstrate the effectiveness of the proposed 
approach in enhancing power supply stability. 
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