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Abstract 

The rapid expansion of Internet of Things (IoT) ecosystems has placed 

enormous demands on cloud infrastructure, creating bottlenecks in data 

transmission, latency, and energy consumption. Edge computing has emerged 

as a promising paradigm to address these challenges by processing data closer 

to the source. However, most existing edge computing systems suffer from 

inefficiencies in energy utilization and resource allocation, limiting their 

effectiveness in real-time IoT applications. The aim of this research is to design 

and implement an energy-efficient edge computing architecture tailored for 

real-time IoT environments. The study seeks to reduce energy consumption 

while maintaining low latency, ensuring scalability, and providing robust 

quality-of-service (QoS) for diverse IoT workloads. The proposed method 

integrates a lightweight virtualization framework, dynamic task scheduling 

algorithms, and an adaptive power management scheme into a multi-tier 

edge architecture. Performance was evaluated using Raspberry Pi 4 edge 

nodes (1.5 GHz CPU, 4 GB RAM), connected to IoT sensors simulating smart 

home and industrial monitoring environments. Metrics such as latency (ms), 

throughput (Mbps), and energy consumption (Joules) were measured and 

compared with conventional cloud-based models. Results showed that the 

proposed architecture reduced average latency by 47% (from 120 ms to 64 

ms), improved throughput by 35% (from 18.5 Mbps to 25 Mbps), and 

decreased energy consumption by 42% (from 12.5 J to 7.2 J per transaction). 

Figure 2 showed the latency reduction in edge vs. cloud model (ms). Figure 

3 showed the throughput comparison of proposed architecture vs. baseline 

(Mbps). Figure 4 showed the energy consumption across task loads (Joules). 

These improvements demonstrate the architecture’s suitability for real-time 

IoT applications such as smart healthcare monitoring, autonomous vehicles, 

smart grids, and industrial automation. By optimizing energy efficiency 

without compromising performance, the proposed solution advances the 

sustainability and scalability of future IoT deployments. 

Keywords: Real-Time IoT Applications; Energy Efficiency; Low Latency; Edge 

Computing Architecture 
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Introduction 

The rapid proliferation of Internet of Things (IoT) technologies has revolutionized various domains, 

including healthcare, transportation, manufacturing, and smart cities. IoT devices generate massive 

volumes of heterogeneous data streams that require real-time processing to enable effective decision-

making (Atlam & Wills, 2018). Traditionally, this data has been transmitted to centralized cloud 

infrastructures for processing and storage. However, the increasing demand for low latency, high 

reliability, and energy efficiency has revealed the limitations of conventional cloud-centric models (Shi et 

al., 2016). Long communication distances, excessive bandwidth consumption, and high energy costs make 

centralized architectures inefficient for real-time IoT applications (Satyanarayanan, 2017). Edge 

computing has emerged as a promising paradigm to mitigate these challenges by decentralizing 

computation, storage, and networking resources closer to the data source (Roman et al., 2018). By 

offloading tasks from the cloud to distributed edge nodes, edge computing reduces latency, alleviates 

bandwidth usage, and enhances the overall quality of service (Qin et al., 2020). Nevertheless, edge 

computing nodes often operate with constrained resources such as limited processing power, memory, 

and battery life, which introduce unique challenges for energy efficiency and workload management 

(Mach & Becvar, 2017). Optimizing energy efficiency at the edge is critical for sustainable IoT 

deployment, particularly in resource-intensive applications like industrial monitoring, telemedicine, and 

autonomous vehicles (Abbas et al., 2018). Recent research highlights various strategies to enhance energy 

efficiency in edge architectures. For instance, lightweight virtualization and containerization techniques 

have been widely explored to minimize resource overhead and accelerate task execution (Morabito et 

al., 2018). Similarly, dynamic task scheduling and workload distribution algorithms are being developed 

to balance computational demands and reduce energy wastage across heterogeneous devices (Liu et al., 

2019). Power-aware computing techniques, including adaptive voltage scaling and workload prediction, 

further contribute to prolonging the operational life of edge devices (Zhou et al., 2019). However, most 

existing solutions either focus solely on computational performance or energy efficiency, rather than 

holistically addressing both in real-time IoT environments (Zhang et al., 2020). The growing diversity of 

IoT applications necessitates an integrated edge computing architecture that can support scalability, 

energy efficiency, and real-time responsiveness. In healthcare systems, for example, wearable devices and 

biosensors must provide instant feedback while minimizing battery drain (Rahmani et al., 2018). Similarly, 

in smart transportation, vehicular edge networks must process sensor data with ultra-low latency to 

ensure passenger safety (Ning et al., 2021). Industrial IoT applications further demand high throughput 

and reliability while maintaining sustainable power usage (Chen et al., 2019). The absence of such 

balanced solutions highlights the pressing need for research on designing efficient edge architectures 

tailored for real-time IoT. This research proposes the design and implementation of an energy-efficient 

edge computing architecture optimized for real-time IoT applications. The architecture integrates 

lightweight virtualization, dynamic scheduling, and adaptive power management to improve both 

performance and energy utilization. By experimentally validating the architecture with Raspberry Pi edge 

devices and real IoT workloads, the study seeks to demonstrate how edge computing can achieve 

sustainable scalability while meeting the performance requirements of emerging IoT applications. 

Materials and Methods 

System Architecture Design 

The proposed architecture was designed as a three-tier system consisting of IoT devices (sensing layer), 

edge computing nodes (processing layer), and cloud servers (storage and analytics layer). IoT sensors 

were deployed to collect environmental and operational data such as temperature, motion, and network 

traffic. These sensors transmitted raw data to edge computing nodes, which were responsible for pre-

processing, feature extraction, task scheduling, and decision-making in real time. Only aggregated insights 

and non-latency-critical data were offloaded to the cloud for long-term storage and large-scale analytics. 

The edge nodes were implemented using Raspberry Pi 4 Model B devices equipped with a 1.5 GHz quad-

core ARM Cortex-A72 CPU, 4 GB RAM, and a 32 GB microSD card. Each node was powered by a 5 V/3 

A power supply and connected to IoT sensors via Wi-Fi and MQTT protocols. A lightweight virtualization 

framework (Docker) was deployed on the edge nodes to enable container-based task execution, ensuring 

low overhead and high scalability. The cloud tier was hosted on an AWS EC2 t3.medium instance (2 

vCPUs, 4 GB RAM) running Ubuntu Server 20.04, which provided backup storage, centralized 
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monitoring, and periodic model updates. Communication between IoT devices, edge nodes, and the 

cloud was managed using a hybrid publish–subscribe architecture implemented with Eclipse Mosquitto 

MQTT broker. 

Experimental Setup 

Two experimental environments were simulated. They include the Smart Home Monitoring Scenario, in 

which the IoT devices collected temperature, humidity, and occupancy data in real time, and transmitted 

it to edge nodes for anomaly detection (e.g., unusual occupancy or temperature spikes). The second is 

the Industrial Monitoring Scenario, in which the IoT vibration and pressure sensors monitored machine 

performance, and edge nodes performed real-time fault detection using lightweight ML models. In both 

scenarios, workloads were distributed across multiple edge nodes to test latency, throughput, and energy 

efficiency under varying loads (from 50 to 500 transactions per second). To quantify energy efficiency, 

each edge node was connected to a USB power monitor (MakerHawk UM25C, accuracy ±0.02 A), 

which recorded voltage (V), current (A), and energy (J) during task execution. Latency was measured 

using Python time-stamping scripts, while throughput was computed as the average number of processed 

messages per second. 

Methodological Workflow 

The research followed a four-step methodological workflow. They includes; Data Collection – IoT sensors 

generated synthetic workloads at different scales to simulate real-world conditions. Task Offloading and 

Scheduling – An adaptive scheduling algorithm dynamically allocated workloads between local execution 

and cloud offloading based on latency thresholds. Energy Management – An adaptive power control 

module reduced CPU frequency during low workloads, conserving energy without degrading QoS. 

Performance Evaluation – The proposed architecture was benchmarked against a traditional cloud-only 

processing model and a baseline edge architecture without energy optimization. 

Evaluation Metrics 

To rigorously assess system performance, the following metrics were adopted: 

a. Latency (ms): The average end-to-end time between IoT data generation and task completion was 

determined. 

b. Throughput (Mbps): The average data transmission rate processed by the system was observed. 

c. Energy Consumption (Joules): The energy used per transaction, as measured by the USB power 

monitor, was obtained. 

d. CPU Utilization (%) and Scalability: The average processing load on the edge nodes and system 

responsiveness under increased workloads was also observed. 

Architecture Diagram 

 

Figure 1: Conceptual Design of the Energy-Efficient Edge Computing Architecture 
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This figure showed the IoT devices,edge layer with modules (Docker containers, scheduler, energy 

manager), and cloud layer for backup/analytics. 

Results and Discussion 

Latency Analysis 

One of the primary performance indicators in real-time IoT systems is latency. In this study, latency was 

measured as the average end-to-end delay between IoT data generation and response delivery. Table 1 

summarizes the latency performance across three architectures: Cloud-only, Baseline Edge, and the 

Proposed Energy-Efficient Edge. 

Table 1: Average Latency Across Architectures 

S/N Workload 

(transactions/sec) 

Cloud-only 

(ms) 

Baseline Edge 

(ms) 

Proposed Edge 

(ms) 

Improvement 

(%) 

1 50 95 72 48 50 

2 100 120 88 64 47 

3 200 155 110 81 48 

4 500 240 185 132 45 

 

Figure 2: Latency Comparison Across Architectures 

The results show that the proposed architecture reduced latency by 45–50% compared to cloud-only 

and 25–30% compared to baseline edge computing. This reduction can be attributed to adaptive 

scheduling and localized decision-making within edge nodes. The results in Table 1 and Figure 2 show 

that the Proposed Energy-Efficient Edge architecture consistently outperformed both Cloud-only and 

Baseline Edge models. Cloud-only architecture showed the highest latency, which is expected due to 

network distance and reliance on centralized resources. For instance, at 500 transactions/sec, latency 

increased to 240 ms, a level that would severely affect real-time responsiveness. Baseline Edge reduced 

latency significantly (72–185 ms across workloads), highlighting the benefit of pushing computation closer 

to data sources. Proposed Edge further reduced latency by 45–50% compared to Cloud-only and 25–
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30% compared to Baseline Edge, achieving as low as 48 ms at 50 transactions/sec. This improvement is 

attributed to adaptive scheduling and localised decision-making, which minimise round-trip delays and 

resource contention. These results indicate that the proposed system can scale better under higher 

workloads without compromising real-time responsiveness. 

Throughput Performance 

Throughput was measured as the average volume of data successfully processed per second. The 

proposed system consistently achieved higher throughput due to optimised scheduling and reduced 

retransmissions. 

Table 2: Throughput Comparison (Mbps) 

S/N Workload (transactions/sec) Cloud-

only 

Baseline 

Edge 

Proposed 

Edge 

Improvement 

(%) 

1 50 10.8 15.6 18.5 18.6 

2 100 14.2 18.1 23.9 32.0 

3 200 17.4 21.2 27.8 31.1 

4 500 19.5 25.0 33.7 34.8 

 

 

Figure 3: Throughput Comparison Across Architectures 

The proposed architecture showed a 30–35% throughput improvement compared to baseline edge, 

enabling faster task execution and more responsive IoT services. Throughput, shown in Table 2 and 

Figure 3, reinforces the latency findings by demonstrating the system’s ability to process more data within 

the same time window. Cloud-only throughput plateaued (10.8–19.5 Mbps), reflecting bandwidth and 

remote server bottlenecks. Baseline Edge improved throughput moderately (15.6–25 Mbps), leveraging 

local resources but still constrained by less efficient scheduling. Proposed Edge achieved the highest 

throughput (18.5–33.7 Mbps), with 30–35% improvement over Baseline Edge. This indicates that the 

proposed system not only lowers delay but also sustains higher transaction rates, supporting denser IoT 

deployments. Applications such as smart traffic systems or video analytics—where data volume is high—

would particularly benefit. 
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Energy Consumption 

Energy efficiency is critical for battery-powered edge devices. Table 3 illustrates the energy consumption 

per transaction, measured in joules, under different workloads. 

Table 3: Energy Consumption per Transaction (Joules) 

S/N Workload (transactions/sec) Cloud-only 

(J) 

Baseline Edge 

(J) 

Proposed Edge 

(J) 

Savings 

(%) 

1 50 8.5 6.9 4.1 40.6 

2 100 10.2 8.0 4.8 40.0 

3 200 11.6 9.4 5.7 39.4 

4 500 12.5 10.3 7.2 30.1 

 

 

Figure 4: Energy consumption trend under different workloads 

The proposed model reduced energy consumption by 30–41%, primarily due to the adaptive power 

control module that scaled CPU frequency during idle periods. As shown in Table 3 and Figure 4, Cloud-

only consumed the most energy (8.5–12.5 J/transaction), due to the overhead of remote communication. 

Baseline Edge reduced energy consumption (6.9–10.3 J), but still showed rising trends under higher 

workloads. Proposed Edge demonstrated substantial savings, consuming only 4.1–7.2 J/transaction, 

translating into 30–41% lower energy use. The primary factor was the adaptive power control module, 

which scales CPU frequency during idle or low-demand phases, preventing unnecessary power drain. 

This ensures sustainability and longer device lifespans, particularly important for large-scale deployments 

in smart cities or remote monitoring. 

CPU Utilization and Scalability 

The CPU utilization under increasing workloads was observed. The proposed system maintained stable 

utilization by dynamically balancing tasks, unlike the baseline edge system which showed spikes leading 

to potential overheating. This suggest that the proposed system can handle workload surges more 

gracefully. Baseline Edge exhibited spikes in CPU usage under high transaction rates, which could lead to 
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overheating and instability. Proposed Edge, by contrast, distributed tasks dynamically and maintained 

stable utilization levels, avoiding bottlenecks and ensuring better scalability. This makes the architecture 

more suitable for mission-critical environments where system crashes or thermal throttling would be 

unacceptable. 

Conclusion 

This research presented the design and implementation of an energy-efficient edge computing 

architecture optimized for real-time IoT applications. The proposed framework integrates lightweight 

virtualization, dynamic task scheduling, and adaptive power management to overcome limitations of 

traditional cloud-based and baseline edge computing models. Experimental evaluations under smart 

home and industrial IoT scenarios demonstrated that the proposed architecture achieved up to 50% 

latency reduction, 30–35% throughput improvement, and 30–41% energy savings compared to 

benchmark systems. These improvements were consistent across varying workloads, highlighting the 

system’s scalability and robustness. Furthermore, CPU utilization analysis confirmed that adaptive 

workload balancing effectively maintained stability under high demand, ensuring reliable performance 

for critical real-time applications. The findings establish that energy-efficient edge computing can provide 

significant benefits across multiple domains, including smart healthcare, autonomous vehicles, smart grids, 

and industrial automation, where low latency and sustainable power consumption are essential. By 

bridging the gap between performance and energy optimization, the proposed architecture contributes 

toward the broader vision of sustainable, real-time IoT ecosystems. Future work will focus on extending 

the framework with AI-driven predictive scheduling algorithms, integrating renewable energy-powered 

edge nodes, and enhancing security mechanisms to safeguard distributed IoT infrastructures. 
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