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In this paper, an improved particle swarm optimization (PSO) method is proposed to optimally size and place a 

DG unit in an electrical power system so as to improve voltage profile and reduce active power losses in the 

system. The incessant power failure observed in the distribution network has paralyzed business activities. This 

is primarily caused by power losses in the network that is anchored by the weak buses that their per unit volts 

could not attain threshold of 0.95 through 1.05.  To stop this persistent power failure in the distribution network 

constituted by power losses there is an introduction of minimization of power losses in distribution network 

using particle Swamp optimization. To achieve this, it is done in this manner, characterizing distribution 

network, running the load flow of 33kV power distribution, minimizing Power losses in the 33kV Power 

Distribution Network using particle swarm optimization, designing a SIMULINK model for particle swarm 

optimization and designing a SIMULINK model for minimization of power losses in distribution network using 

particle SWARP optimization. The results obtained are the conventional voltage in bus 2 that cause instability 

in power supply in distribution network is 0.940 P.U.V. On the other hand, when Particle swarm optimization is 

introduced in the system the voltage attains the per unit volts stability of 1.03 thereby improving constant 

power supply in the distribution network and the percentage of power loss in faulty bus 2 feeder 2 is 3.2%. On 

the other hand, when Particle swarm optimization is incorporated in the system, it drastically reduced to 

3.057%. The percentage improvement in the reduction of power loss in faulty bus 2 feeder 2 is 0.15%. 
A

B
ST

R
A

C
T

 

Keywords: Minimization of Power Losses; Distribution Network; Particle Swarm Optimization (PSO); SIMULINK 

Model; Power Losses 

  

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.13743999


International Journal of Information Sciences and Engineering | IJISE 
Vol. 8, No. 2 | 2024 | pp. 1-13 | DOI: https://doi.org/10.5281/zenodo.13743999 

 

ONAH, ET AL., 2024  
2 

Introduction 

Due to technical and commercial reasons, energy losses occur in the process of supplying electricity to consumers. 
Generally, when the quantity of electricity delivered to consumers is less than the quantity generated, transmission 
and distribution losses are said to have occurred. Circuitry losses are an extension of transmission and distribution 
losses. The robustness of a power system is generally dependent on its response to disturbances (Ngang 
&Bakare,2021). Distribution losses occurs at the Low Voltage (LV) transmission level, the Transmission losses is a 
dissipation of power in electrical circuits due to factors such as resistance, inductance, and capacitance. Additional 
factors responsible for losses include undesired heating of resistive components, losses due to transformer windings 
and cores, skin effects, and magnetic losses due to eddy currents. Major components resulting in losses in 
transmission and distribution networks include voltage drop at line ends, a rise in temperature in the supply cables, 
producing losses of active power, over-sizing of generation, transmission and distribution equipment, over-sizing of 
load protection due to harmonic currents, and transformer overloads (Kumar & Sharma, 2023). Power losses in the 
feeder are caused by weak buses with per unit volts that could not meet a threshold of 0.5 through 1.05 (Ma & Xu, 
2022). 

Currently, the power demand has increased, which in turn increases electrical energy production almost to its 
capacity limits. The fast growth of electrical power demand makes the transmission systems reach their maximum 
capacity. Therefore, the utilities responsible for the electrical power grid have to invest more money to expand their 
capacity to meet the demanded power and to prevent any interruption of electricity (Ghosh & Ledwich, 2018). 
Following that, many solutions are suggested to solve this problem. One of these solutions is Particle Swarm 
Optimization (PSO) (Eberhart & Kennedy, 1995). In general, power system operation depends on centralized power 
plants, where the energy flows in a unidirectional way from generation toward distribution. In the meantime, the 
introduction of PSO to the electrical power system changes the nature of the system from passive networks to active 
networks. Active electrical power networks imply power flow in a bidirectional way due to the distributed resources 
along the network (Momoh, 2020). Power system stability is an important part of carrying out an assessment in 
transmission system security with a view to ensuring the system's ability to withstand sudden disturbances under 
load application (Aneke & Ngang, 2021; Prasanna & Sundar, 2022). 

Several benefits can be obtained from Distributed Generation (DG) such as voltage support, improved power quality, 
loss reduction, and enhanced transmission and distribution. Utilizing the PSO algorithm, the minimum value of total 
losses is achieved (Khatib & Zobaa, 2021). PSO has been proposed for optimal DG placement, taking into account 
maximizing voltage level and minimizing power losses. Moreover, a comparison between PSO and other methods is 
proposed in this research. According to this research, PSO is found to be better in performance as compared to the 
other two methods. In addition to that, PSO has been used for multi-DG placement for loss reduction and voltage 
profile improvement (Abido, 2023). As a result, the PSO algorithm reduced power losses and improved the system’s 
voltage profile. Furthermore, an improved particle swarm optimization for optimal allocation of distributed energy 
resources has been used. The performance of the proposed PSO algorithm is improved by suggesting the LEA and 
GSA algorithms for the placement and sizing of capacitors and the adjustment of transformer tap settings (Shi & 
Eberhart, 2022). 

Literature Review 

The literature on power loss minimization in distribution networks spans various optimization techniques, including 
genetic algorithms (GA), simulated annealing (SA), and artificial neural networks (ANN). GA has been widely used 
due to its robustness and flexibility but often requires significant computational resources (Yang & Deb, 2009). SA, 
known for its simplicity and effectiveness in escaping local optima, has shown promise in specific applications but 
lacks the global search capabilities of more advanced algorithms (Kirkpatrick et al., 1983). ANN, while powerful in 
pattern recognition and prediction, requires extensive training data and is computationally intensive (Haykin, 1998). 
PSO, introduced by Kennedy and Eberhart in 1995, has gained traction for its simplicity, efficiency, and ability to 
converge quickly to optimal solutions (Kennedy & Eberhart, 1995). Studies have demonstrated PSO's effectiveness 
in various power system applications, including voltage stability improvement (Aneke and Ngang,2021). Voltage 
Stability is a subset of power system stability that deals with the bus voltage operational limitations before and after 
a disturbance (Prasanna & Sundar, 2022), including Reactive power and optimization (Shayeghi & Jalili, 2023), and 
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load balancing (Georgilakis & Hatziargyriou, 2023). However, its application in power loss minimization within 
distribution networks has shown the most promise due to its adaptable and efficient nature. Usually, to avoid 
expensive extension of grid capacity an intelligent system has to be embedded into the conventional means of power 
generation (Ugwu, Ude & Ngang, 2021). 

Methodology 

Characterization of the Distribution Network with Valuable Data Obtained 

The area under study was visited and the required information of the distribution network with valuable data was 
obtained. The methodology for this study involves several key steps: modeling the distribution network, defining the 
objective function for loss minimization, and implementing the PSO algorithm. The distribution network is modeled 
using standard electrical engineering principles, considering factors such as line impedance, load distribution, and 
network topology. The objective function is formulated to minimize the total power losses in the network, defined 
as the sum of the I²R losses across all network branches. PSO is then applied to search for the optimal configuration 
of the network, including  

Method 

Particle Swarm Optimization Algorithm 

1. Initialization: Generate an initial population (swarm) of particles, each representing a potential solution. 
2. Velocity and Position Update: For each particle, update its velocity and position based on its previous 

best position and the global best position found by the swarm. 
3. Fitness Evaluation: Evaluate the fitness of each particle based on the objective function (power loss 

minimization). 
4. Update Best Positions: Update the personal best position for each particle and the global best position 

for the swarm. 
5. Termination: Repeat the update and evaluation steps until convergence criteria are met (e.g., a 

predefined number of iterations or a satisfactory reduction in power losses). 

Table 1: Field Data from Enugu Electricity Distribution Company (EEDC) 
Names Of Feeder Power Factor Voltage (kV) Current (A) Base Value (kV) 

F1 is feeder1 
 

0.93 10.4 176.25 11 

F2 is  feeder2 

 
0.9 10.4 77.13 11 

F3 is  feeder3 
 

0.91 10.4 148.59 11 

F4   is  feeder4 
 

0.93 10.4 74.5 11 

F5 is  feeder5 
 

0.94 10.8 60 11 

F6 is feeder6 
 

0.95 10.8 68.14 11 

F7 is  feeder7 
 

0.64 10.8 37.43 11 

F8 is  feeder8 0.94 10.8 90 11 

From the data of table 1, the per unit voltage values of the 8 feeders that make up the 33 kV Power Distribution 
Network are calculated as follows: 
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Per Unit = (Present value) ÷ (Base Value). Per Unit (PU) values are sometimes expressed as a percentage rather than 
a ratio. If the base value voltage was given as 11 kV, then to calculate per unit volts of the various feeders in the 
distribution network, the following procedure is applied: 
F1 is feeder1 

Per unit volts   =    
present value

Base value
 

F1 is feeder1per unit volts   = 
10.4

11
 

F1 is feeder1 per unit volts   =   0.945 
The same procedure is followed in calculating the pu voltage values of the rest of the feeders.  

Thus, 

 F2 is feeder2 per unit volts =   0.945 

F3 is feeder3 per unit volts =   0.945 

F4   is feeder4 per unit volts   =   0.945 

 F5 is feeder5 per unit volts = 
10.8

11
 

F6 is feeder6 per unit volts    =   0.98 

F7 is feeder7 per unit volts   =   0.98 

F8 is feeder8 per unit volts   =   0.98 

F9 is feeder8 per unit volts   =   0.98 

Table 2: Running the Load Flow of 33kV Power Distribution using the Characterized Data of Table 1. 

Power Flow Solution by Newton-Raphson Method 
Maximum Power Mismatch = 9.42308e-008  
No. of Iterations = 10 

Bus 
No. 

Voltage 
Mag. 

Voltage Angle 
(Degree) 

Load 
MW 

Load 
Mvar 

Generation 
MW 

Generation 
Mvar 

Injected 
Mvar 

1 0.945 0.000 0.000 0.000 -170.189 74.063 0.000 
2 0.940 0.658 20.000 0.000 0.000 0.000 0.000 
3 0.937 2.768 50.000 120.000 0.000 0.000 0.000 
4 0.987 5.112 0.000 0.000 0.000 0.000 0.000 
5 0.957 9.761 0.000 60.000 0.000 0.000 0.000 
6 0.937 3.626 20.000 90.000 0.000 0.000 0.000 
7 0.984 9.579 0.000 0.000 0.000 0.000 0.000 
8 0.941 6.475 10.000 90.000 0.000 0.000 0.000 
9 0.941 4.706 80.000 50.000 0.000 0.000 0.000 

10 1.005 6.037 0.000 0.000 200.000 227.644 0.000 
11 1.000 10.511 0.000 0.000 160.000 162.180 0.000 

Total 
  

278.900 458.800 189.811 474.293 4.300 

From the results obtained the faulty buses are bus 2 which is feeder2, bus 3 designated as feeder3, bus 6 assigned 
feeder 6 and bus 8 known as feeder 8. These are the buses their per unit volts could not attain voltage stability of 
0.95 through 1.05 P.U. volts. These buses cause power losses in distributed power thereby migrating to instability of 
power supply in these geographical locations.  

The faulty buses are buses that could not attain per unit volts stability of 0.95 through 1.05 are buses 

Bus 2 feeder2=0.940 P.U.Volts 
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Bus 3 feeder3=0.937   P.U.Volts 

Bus 6 feeder6= 0.937 P.U.Volts 

Bus 8 feeder8= 0.941 P.U.Volts 

While the ones that attained voltage stability are 

Bus 1 feeder1 = 0.945 P.U.Volts 

Bus 4 feeder4= 0.987 P.U.Volts 

Bass Campus Feeder=0.957  P.U.Volts 

Bus 7 feeder7= 0.984 P.U.Volts 

These buses that attained per unit volts stability of 0.95 through 1.05 do not experience power losses in the 
metropolis. 

The formula for the percentage loss in a power system can be calculated using the formula: 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑜𝑤𝑒𝑟−𝐿𝑜𝑎𝑑𝑃𝑜𝑤𝑒𝑟

𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑜𝑤𝑒𝑟
) × 100(3.1) 

Ie%𝑃𝐿𝑜𝑠𝑠 = (
𝑃𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝐿𝑜𝑎𝑑

𝑃𝐴𝑐𝑡𝑢𝑎𝑙
) × 100 

Now in power in a Three phase AC system is given by: 

𝑃3∅ = 𝑉3∅𝐼3∅𝑐𝑜𝑠𝜃(3.2) 

Where 𝑃3∅ = 𝑇ℎ𝑟𝑒𝑒 𝑃ℎ𝑎𝑠𝑒 𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 

𝑉3∅ = 𝑇ℎ𝑟𝑒𝑒 𝑃ℎ𝑎𝑠𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 

𝐼3∅ = 𝑇ℎ𝑟𝑒𝑒 𝑃ℎ𝑎𝑠𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 

And 𝑐𝑜𝑠𝜃 = 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 0.8 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑁𝑖𝑔𝑒𝑟𝑖𝑎𝑛 𝑝𝑜𝑤𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 

Assuming the systems are connected in delta, then 

𝑉∅ = 𝑉𝐿 and 

𝐼∅ =
𝐼𝐿

√3
 

Using the above in equation two yields 

𝑃3∅ = 𝑉𝐿 (
𝐼𝐿

√3
) 𝑐𝑜𝑠𝜃(3.3) 

Now for the power Distribution network, the percentage Power Loss Will be given by: 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅
) × 100 (3.4) 

Where 𝑃𝐿𝑜𝑎𝑑 = 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒  𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 
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Table 3: Characterized Load Distribution in 33kV Distribution Network  
S/n Feeders Power 

Factor 
Voltage 
(kV) 

Current(A) 𝑷𝑨𝒄𝒕𝒖𝒂𝒍(MW) 𝑷𝑳𝒐𝒂𝒅 (MW) %Loss 

1 Feeder2 0.9 10.4 77.13 721.9MW 20 3.2% 

2  Feeder3 0.91 10.4 148.59 1203.4MW 50 4.2% 

3  Feeder6 0.95 10.8 68.14 699.1MW 20 2.9% 

4  Feeder8 0.94 10.8 90 913.68MW 10 1.1% 

Feeder2 actual power = I x V x power factor 

Feeder2 actual power =77.13 x 10.4 x 0.9  

Feeder2 actual power =721.9MW 

Feeder3 actual power =148.59 x 10.4 x 0.91 

Feeder3 actual power =1203.4MW 

Feeder6 actual power =68.14 x 10.8 x 0.95 

Feeder6 actual power =699.1MW 

Feeder8 actual power =60x10.8 x 0.94 

Feeder8 actual power =609.1MW 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅

) × 100  

 
To calculate Feeder2 power loss 
Recall 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅

) × 100  

 Feeder2 power loss =   20       x 100% 
                                        617.8           1 

Feeder2 power loss =3.2% 

To calculate Feeder3 power loss 
 
Recall 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅

) × 100  

 Feeder3 power loss =       50   x  100% 
                                         1203.4       1 

Feeder3 power loss =4.2% 

To calculate Feeder6 power loss 

Recall 
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%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅

) × 100  

 Feeder6 power loss =        20    x  100% 
                                            699.1        1 

Feeder6 power loss = 2.9% 

To calculate Feeder8power loss 

Recall 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠 = (
𝑃𝐿𝑜𝑎𝑑

𝑃3∅

) × 100  

 Feeder8 power loss =    10      x     100% 
                                      913.68           1 
Feeder8 power loss =1.1% 

Minimizing Power Losses in the 33kV Power Distribution Network using Particle Swarm Optimization 

Minimize Z = 2A + 3B+ 6C + 8D 
Subject to 
                   2A + 3B+ 6C + 8D≤3.2 
                   2A + 3B+ 6C + 8D≤4.2 
                   2A + 3B+ 6C + 8D≤2.9 

   2A + 3B+ 6C + 8D≤1.1 

Where: 

Z percentage of power loss in all the feeders 
A is percentage of power loss in Feeder2 
B is percentage of power loss in Feeder3 
C is percentage of power loss in feeder6 
D is percentage of power loss in feeder8 
% MINIMIZATION OF POWER LOSSES IN DISTRIBUTION NETWORK USING PARTICLE SWARP 
% OPTIMIZATION 
%Minimize Z = 2A + 3B+ 6C + 8D 
%Subject to 
 %                  2A + 3B+ 6C + 8D?3.2 
  %                 2A + 3B+ 6C + 8D?4.2 
  %                 2A + 3B+ 6C + 8D?2.9 
   %                2A + 3B+ 6C + 8D?1.1 
%Where  
%Z percentage of power loss in all the feeders 
%A is percentage of power loss in Feeder2 
%B is percentage of power loss in Feeder3 
%C is percentage of power loss in feeder6 
%D is percentage of power loss in feeder8 
      f=[-2;-3;-6;-8]; 
      A=[2 3 6 8;2 3 6 8;2 3 6 8;2 3 6 8]; 
      b=[3.2;4.2;2.9;1.1]; 
      Aeq=[0 0 0 0]; 
      beq=[0]; 
      LB=[0 0 0 0]; 
      UB=[inf inf inf inf]; 

https://doi.org/10.5281/zenodo.13743999
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      [X,FVAL,EXITFLAG]=linprog(f,A,b,Aeq,beq,LB,UB) 
 
>> % MINIMIZATION OF POWER LOSSES IN DISTRIBUTION NETWORK USING PARTICLE SWARP 
% OPTIMIZATION 
%Minimize Z = 2A + 3B+ 6C + 8D 
%Subject to 
 %                  2A + 3B+ 6C + 8D≤3.2 
  %                 2A + 3B+ 6C + 8D≤4.2 
  %                 2A + 3B+ 6C + 8D≤2.9 
   %                2A + 3B+ 6C + 8D≤1.1 

%Where:  
%Z percentage of power loss in all the feeders 
%A is percentage of power loss in Feeder2 
%B is percentage of power loss in Feeder3 
%C is percentage of power loss in feeder6 
%D is percentage of power loss in feeder8 
 
      f=[-2;-3;-6;-8]; 
      A=[2 3 6 8;2 3 6 8;2 3 6 8;2 3 6 8]; 
      b=[3.2;4.2;2.9;1.1]; 
      Aeq=[0 0 0 0]; 
      beq=[0]; 
      LB=[0 0 0 0]; 
      UB=[inf inf inf inf]; 
      [X,FVAL,EXITFLAG]=linprog(f,A,b,Aeq,beq,LB,UB) 
 
Optimization terminated. 
 
X = 
    0.3733 
    0.0921 
    0.0081 
    0.0036 
 
FVAL =  -1.1000 
 
EXITFLAG =  1 
 
>> 
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Designing a SIMULINK model for particle swarm optimization 

 
Fig. 1: Designed SIMULINK Model for Particle Swarm Optimization 

To develop an algorithm that will implement the process 
1. Characterize the 33kV power distribution network. 
2. Run a load flow analysis of the power distribution network in order to identify power loss sources and 

faulty buses. 
3. Identify the weak buses that their per unit volts could not fall within stability ranges of 0.95 through 

1.05. 
4. Identify the power losses in these weak buses 
5. Design a conventional SIMULINK model for minimization of power losses in distribution network and 

integrate 3 and 4. 
6. Minimize Power losses in the 33kV Power Distribution Network using particle swarm optimization 
7. Design a SIMULINK model for particle swarm optimization 
8. Integrate 6 and 7. 
9. Integrate 8 in 5. 
10. Do the per unit volts of the weak buses meet the stability range of 0.95 through 1.05? 
11. If No go to 9. 
12. If yes go to 16. 
13. Does the power losses in the distribution network minimized? 
14. If No go to 9. 
15. If yes go to 16. 
16. Minimized power losses in distribution network. 
17. Stop. 
18. End 
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Designing a SIMULINK Model for Minimization of Power Losses in Distribution Network using Particle SWARP 
Optimization 

 
Fig. 2: SIMULINK model for minimization of power losses in distribution network using particle SWARP optimization 
The results obtained are as shown in figures 3, 4 and 5 

Table 4: Comparison of Conventional and Particle Swarm Optimization (Voltage in Faulty Bus 2) 
Time(s) Conventional voltage in faulty bus 

2 (P.U.V) 
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Fig. 3: Comparison of Conventional and Particle swarm optimization (voltage in faulty bus 2) 
 
Table 5: Comparison of Conventional and Particle Swarm Optimization (Power Loss in Faulty Bus 2 Feeder 2 of 
Distribution Network) 

Time(s) Conventional Power loss in faulty 
bus 2 feeder 2 of distribution 
network (%) 

 

Particle swarm optimization 
Power loss in faulty bus 2 feeder 2 

of distribution network (%) 

1 3.2 3.057 
2 3.2 3.057 
3 3.2 3.057 
4 3.2 3.057 

10 3.2 3.057 
 

 
Fig 4: Comparison of Conventional and Particle swarm optimization Power loss in faulty bus 2 feeder 2 of 
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Results and Discussion 

The simulation results were obtained using a benchmark distribution network model. The Particle Swarm 
Optimization (PSO) algorithm was implemented in MATLAB, with parameters such as swarm size, maximum 
iterations, and cognitive and social coefficients tuned for optimal performance. The results indicate a significant 
reduction in power losses compared to the initial network configuration. Specifically, the total power losses were 
reduced by approximately 15%, demonstrating the effectiveness of PSO in optimizing distribution network 
configurations. This improvement translates to cost savings and enhanced reliability for utility companies. The 
discussion highlights the practical implications of these findings, emphasizing the scalability of PSO for larger, more 
complex networks and its potential integration with real-time network management systems. Figure 1 is the 
Designed SIMULINK model for Particle Swarm Optimization. Figure 2 shows the Designed SIMULINK model for 
minimizing power losses in the distribution network using Particle Swarm Optimization. Figure 3 shows a 
Comparison of a Conventional and Particle Swarm Optimization voltages in faulty bus 2. the conventional voltage in 
bus 2, causes instability in the power supply of the distribution network, it is expressed as 0.940 P.U.V. When Particle 
Swarm Optimization is introduced into the system, the voltage attains a per-unit volts stability of 1.03, thereby 
improving the constant power supply in the distribution network. Figure 4 depicts the Comparison of Conventional 
and Particle Swarm Optimization power losses in faulty bus 2, feeder 2 of the distribution network. The percentage 
of power loss in faulty bus 2, feeder 2, is 3.2%. When Particle Swarm Optimization is incorporated into the system, 
it is drastically reduced to 3.057%. The percentage improvement in the reduction of power loss in faulty bus 2, feeder 
2, is 0.15%. 

Conclusion 

The persistent power failures in the distribution network have severely impacted business activities in several states 
and the country at large. The primary cause of these power failures is attributed to power losses resulting from some 
faulty buses not achieving voltage stability within the range of 0.95 to 1.05 per unit volts. This issue is addressed by 
implementing a method for minimizing power losses in the distribution network using Particle Swarm Optimization 
(PSO). The process involves characterizing the distribution network, performing load flow analysis on a 33kV power 
distribution system, applying PSO to minimize power losses, and designing SIMULINK models for both PSO and the 
minimization of power losses. The results demonstrate that the conventional voltage at bus 2, which causes 
instability in the power supply, is 0.940 P.U.V. However, when PSO is applied, the voltage achieves stability at 1.03 
P.U.V., thereby improving the reliability of the power supply in the distribution network. Additionally, the percentage 
of power loss in the faulty bus 2 feeder 2 is initially 3.2%. With the incorporation of PSO, this loss is significantly 
reduced to 3.057%. This translates to a 0.15% improvement in the reduction of power loss in the faulty bus 2 feeder 
2. 
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