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Abstract 

This paper examines the integration of human factors, artificial intelligence 

(AI), and automation in U.S. smart farming, focusing on sustainability and 

safety management. The agricultural sector is witnessing rapid transformations 

driven by AI and automation technologies, which are applied in crop 

management, soil monitoring, and livestock operations. These advancements 

promise significant improvements in productivity and environmental 

sustainability. However, their success heavily depends on the human 

dimension—specifically, the effective incorporation of human factors to 

ensure technology adoption, usability, and safety. By highlighting key 

innovations in smart farming, such as robotic milking, automated 

phenotyping, and safety systems, the paper underscores the importance of a 

synergistic approach that aligns technological solutions with human needs. 

The study also addresses challenges such as resistance to technological change, 

training requirements, and the potential risks of automation. Finally, it 

presents case studies demonstrating how AI-driven solutions can enhance 

operational safety and sustainability while calling for continuous research into 

the human factors shaping agricultural innovation. 

Keywords: Smart Farming; Human Factors; Artificial Intelligence (AI); 

Automation; Sustainable Agriculture; Safety Management 

 

Introduction 

The relevance of human factors, artificial intelligence (AI), and automation in smart farming is increasing 

for a sustainable future in agriculture. A multidisciplinary synergy among human factors, IT-enabled AI, 

and mechanised automation is indispensable everywhere (Liu & Zhou, 2021). U.S. farming, especially the 

growing berry sector, is innovating. In fruit farming, many farmers use digital soil sensing, microclimatic 

monitoring at the plant level, and robotic systems for fruit harvesting (Zhuo & Salleh, 2021). Mixed-

cropping patterns have been expanded, and UAVs are used for photogrammetry and video capturing 

(Hemathilake & Gunathilake, 2022). Multidisciplinary standards for information transfer in precision and 

automated farming and evidence-based precision or automated farm safety management are also gaining 

importance to reduce inherent hazards in smart and precision farming (Mergos, 2022). Today, we are 

developing human factors benchmarks covering informed work performance challenges on a U.S. farm. 

Rapid urbanisation, a global upsurge in population, and reduced international interest in food 

sustainability have intensified the race for research and development of sustainable strategies for getting 

food from farm to table. People are directly connected because farming funnels human food and plays 

a binding role in communities. Everyone is worried about the current disconnect between smart 

productivity and care today. All the mentioned concerns reflect a societal urgency to resolve the most 

debated issue of our time. It is not just a design concern but of all humanity (Zhuo & Salleh, 2021). We 

are meeting these necessary demands to transform agriculture over and above global trends. What is the 

innovative science behind the scientific advancements discussed; how has the developed global society 

and its human factor led to such developments? This paper presents state-of-the-art advancements 
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developed in the U.S. because of diverse and expanding berry productions and the changes to the human 

factors approach with advancing technology (Mergos, 2022). 

Background and Rationale 

Across history, agriculture and farming practices have evolved alongside technological advancements. 

Changes in farming techniques have transformed family-owned small farms into large, industrial-scale, 

high-technology operations. Initially, advances in farming technology focused primarily on machines and 

equipment (Tyagi et al., 2020). As demands shifted from locally fed farming communities towards a 

global market, the scale of agricultural production and related systems changed dramatically. Due to the 

growing importance of agricultural industries today, human factors must be incorporated into the design 

and operation of smart technologies, processes, and knowledge of operating within the complexity of 

the farming ecosystem (Mühlroth & Grottke, 2020). Decisions at the farm level, such as fertilising 

practices, pest control, planting schedules, reseeding, and other practices, are central to creating efficient 

and safe farms (Dwivedi et al., 2021). The ergonomic aspects, task design, and cognitive functions of 

people involved in agriculture are critical for enhancing productivity, efficiency, and safety in 

contemporary and future agricultural systems (Mariani et al., 2023). The agricultural ecosystem comprises 

numerous interconnected living and non-living processes, all contributing to human welfare and 

environmental, social, and economic sustainability. As the global population grows and the demand for 

food increases, these systems have grown more complex, with food safety, security, quality, agility, reach, 

and traceability becoming essential concerns for all stakeholders (Mariani et al., 2023). Agricultural 

practices are progressing through research on biological and technological aspects to meet this increasing 

complexity. AI and automation are critically highlighted in modern research, being applied across various 

sectors, including agriculture, which is increasingly reliant on biological research to underpin technological 

innovations (Tyagi et al., 2020). 

AI is utilised for agricultural prediction, classification, and management and for developing mathematical 

and computational models focused on biological and environmental processes (Mühlroth & Grottke, 

2020). However, while AI and automation provide promising advancements, there is a risk of neglecting 

the human contributions and challenges critical to developing smarter agriculture (Dwivedi et al., 2021). 

Technological innovations could enhance productivity and promote environmental conservation, but 

they must be implemented to account for human behaviour, ethical considerations, and ecological 

principles. For instance, advancements such as drone applications for crop management must align with 

efforts to mitigate climate change (Mariani et al., 2023). Moreover, introducing such technologies 

requires effective communication and consumer education to avoid resistance from farmers, food 

industries, and consumers when introducing new tools and techniques. If AI-driven innovations' human 

and behavioural aspects are not adequately considered, inefficiencies could emerge, leading to higher 

economic and environmental costs (Dwivedi et al., 2021). 

Human Factors in Smart Farming 

Human factors (HF) are essential in smart farming, where advanced instruments are increasingly used to 

manage crops and livestock. As farming technologies evolve, it is critical to examine the physical aspects 

of human-technology interaction, such as ergonomics, and the training and knowledge base required to 

manage automation and support complex decision-making processes (Smidt & Jokonya, 2022). This is 

particularly relevant as farmers adopt tools like drones, AI, and precision imaging designed to optimise 

the health and sustainability of crops and animals. Research is now needed to explore the human 

motivations behind technology adoption and how farmers manage these systems to maintain 

productivity and ecological balance (Wang et al., 2021). In smart farming, HF is a component of how 

producers engage with new technologies and a decisive factor in whether they adopt or reject them 

(Kernecker et al., 2020). HF involves understanding how people interact with technology and 

environments, highlighting the importance of including human needs and capabilities in technology 

design. For instance, precision farming employs a variety of tools—from GPS to multispectral imagery—

to help farmers better understand their environments and make informed management decisions. These 

technologies, in theory, lead to more efficient input management and higher output (Wang et al., 2021). 
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However, under this view, human involvement can often be seen as secondary, assuming that human 

intervention becomes less necessary as machines improve. 

However, this perspective overlooks the complexity of decision-support systems that require active 

human engagement. Precision agriculture’s success depends on the technology and the farmer’s ability to 

monitor environmental conditions, such as pest risks, and manage multiple, often conflicting, plans 

(Kernecker et al., 2020). This moves the discussion beyond a simplistic understanding of 'adoption' as 

merely using technology; it shows that effective use requires solid managerial skills and a deep 

understanding of the technology and the ecosystem it operates within. The design of decision aids, 

therefore, must fully consider human behaviours and capacities. As user-centered design evolves, it must 

reflect user preferences and sophistication changes, acknowledging that too many choices can lead to 

technology fatigue or rejection. Additionally, as users engage with technology, their interaction patterns 

can shape the future development of these systems, emphasising the need for continuous HF research 

(Smidt & Jokonya, 2022). 

Importance of Human Factors 

Various human factors research has been conducted across smart farming, automation, and AI 

development. This expertise is crucial as it optimises operational productivity while enhancing user 

satisfaction, which, in turn, motivates the adoption of innovations across various levels of agricultural 

operations (Wang et al., 2021). Developing efficient agricultural technologies and autonomous features 

often follows design thinking principles to ensure cognitive ease and attractiveness for end users (Rijnks 

et al., 2022). As farming becomes increasingly intelligent, these technologies must integrate human factors 

deeply, recognising the workforce as a critical component of the agricultural infrastructure. Research on 

human factors in agriculture is precious, as it aligns technological advancements with the diverse 

backgrounds and skills of the workforce, ensuring that innovations are functional and accessible to a wide 

range of users (Charania & Li, 2020). The potential dangers of automation in agriculture are particularly 

relevant in the U.S. sector, where many producers still rely heavily on manual labour. Labour forms the 

foundation at every stage of the agricultural process, and any shift towards automation must account for 

workers' needs and competencies to be truly profitable (Rijnks et al., 2022). Human factors expertise is 

essential for identifying the requirements to design straightforward automated solutions that do not 

impose steep learning curves or exclude less technologically skilled workers (Charania & Li, 2020). While 

managing the various challenges associated with automation—such as safety concerns and ensuring user-

friendly operations—presents a significant hurdle, increasing attention to these issues has heightened the 

importance of human factors in designing effective and intelligent farming procedures (Wang et al., 

2021). The benefits for farmers include reduced stress, lower input costs, improved operational efficiency, 

and better planning capabilities (Charania & Li, 2020). Measuring the advantages of integrated systems 

in smart farming requires examining key metrics such as productivity, health benefits, security, safety, and 

overall wellness. Furthermore, cross-disciplinary partnerships are critical for conducting broad-scale 

research in this area, as collaborative efforts enable a more holistic approach to achieving the full 

potential of technological advancements in agriculture (Rijnks et al., 2022). 

Challenges and Solutions 

Integrating human factors (HF) into smart farming technologies faces several challenges. One significant 

barrier is the conservative nature of farming culture, which often leads to the slow adoption of radical 

technological changes (Bokrantz & Skoogh, 2023). The high cost of new technologies, especially for small 

farms, further exacerbates the issue, as many farmers cannot afford cutting-edge solutions. Additionally, 

the lack of adequate training often results in farmers being perceived as technophobes, and the mental 

stress caused by excessive training or system malfunctions can further deter them from adopting smart 

technologies (Gerli et al., 2022). Farmers represent a diverse group with varying levels of education and 

work experience, which means that a "one size fits all" approach to technology adoption is impractical. 

This diversity complicates the development of training programs and tools that can effectively meet the 

needs of all farmers (Li et al., 2021). Another challenge in integrating AI and human factors in farming is 

accessing relevant literature and information across disciplines. Much of the research on AIHF (AI and 
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Human Factors) resides outside the agricultural domain, making it hard for farmers and agricultural 

professionals to access the knowledge they need (Gerli et al., 2022). To address these challenges, IT-

driven synergies that combine HF, AI, and automation are being considered for agricultural applications. 

However, information on these integrated approaches is often scattered and not readily available in one 

place, highlighting the need for cross-disciplinary collaboration among researchers, technologists, 

psychologists, and agricultural experts (Bokrantz & Skoogh, 2023). 

A critical strategy for overcoming these challenges involves the development of user-friendly and farmer-

centric teaching tools. These tools should offer a deeper understanding of technology's value and practical 

application in farming. HF research has been instrumental in identifying key barriers to adopting smart 

machinery, and educational institutions are encouraged to incorporate HF and ergonomic design 

principles into agricultural management curricula at both the undergraduate and postgraduate levels (Li 

et al., 2021). Human-centered design approaches, particularly those focused on risk and protective factors 

related to on-farm robotic equipment, are also being developed to support safer and more efficient 

farming practices. Consultants and advisors can leverage these insights to provide technology assessment 

and selection services to farmers, ensuring that the tools and systems chosen are well-suited to the specific 

needs of each farm (Gerli et al., 2022). In addition to educational and advisory efforts, continuous 

feedback loops must be established to refine the technologies and the processes driving them, ensuring 

they remain relevant and effective over time. Extension services, which offer accessible resources and 

simple solutions for farmers, are a key component of this multi-pronged communication strategy to 

increase farmer engagement with smart technologies (Bokrantz & Skoogh, 2023). 

Artificial Intelligence in Agriculture 

Artificial Intelligence (AI) technologies find widespread applications in various areas of agriculture, 

particularly when integrated with the Internet of Things (IoT). Through extensive data collection and the 

application of advanced big data analytical tools, AI aids decision-making processes and enhances both 

crop yields and safety (Fuentes-Peñailillo et al., 2024). The core capabilities of AI in agriculture include 

advanced data analytics, machine learning, and predictive modelling. For instance, AI integrated with 

computer vision collects detailed information on crop development. A major application of AI in this 

sector is monitoring crops for factors such as pest infestations, diseases, and the ripeness of fruits or 

vegetables, often achieved through drones or aeroplanes. This monitoring capability extends to managing 

irrigation and providing recommendations on fertiliser use while simultaneously collecting data on 

resource allocation (Shaikh et al., 2022). These precision agriculture methods not only increase 

productivity through optimal resource management but also play a role in reducing and preventing harm 

to the environment. 

AI systems significantly enhance decision-making processes in agriculture by assisting humans in complex 

tasks. In traditional agricultural practices, farmers manually allocate water for different crops based on 

their assessments of pest infestations and environmental conditions. In smart farming, AI technologies aid 

these decisions by providing data-driven insights on when to water crops, apply pesticides, harvest, and 

resource allocation recommendations (Karunathilake et al., 2023). These AI systems can offer advice that 

enhances the farmer’s assessment of different courses of action, indirectly influencing productivity through 

improved decision-making. However, the development of AI technologies is data-intensive and requires 

vast training data, which poses a significant challenge. This challenge is exacerbated by the difficulty in 

collecting real-time data in agricultural contexts, especially given the variability of environmental 

conditions (Shaikh et al., 2022). Despite these hurdles, numerous studies have reported the positive 

impacts of AI in agriculture, particularly in yield improvements and enhanced safety. However, 

quantifying the extent of these impacts—such as reductions in pesticide use—remains an area that needs 

further research (Fuentes-Peñailillo et al., 2024). Additionally, legal and ethical concerns are associated 

with adopting AI in agriculture. Privacy issues surrounding data use and potential biases in AI algorithms 

present significant challenges. While AI-based decision-making systems improve operational safety, 

limited research exists to quantify these improvements (Karunathilake et al., 2023). Smart farming 

technologies have a direct nexus to environmental sustainability and the agri-food sector by enhancing 

farmer safety, promoting health, and ensuring the safe delivery of commodities to consumers. 
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Nevertheless, the full potential of these technologies, particularly in terms of their ethical and safety 

implications, requires further exploration. 

Applications of AI in Smart Farming 

AI has emerged as a revolutionary technology within smart farming practices, particularly in applying AI 

subsystems integrated with the Internet of Things (IoT) and Systems of Systems. One of the key 

applications is the development of smart and automatic irrigation systems, which allow for efficient water 

management by analysing real-time data on weather conditions, soil moisture, and crop requirements 

(Boursianis et al., 2022). AI technologies also support a range of agricultural analyses, such as vegetation 

and pest control, by providing actionable insights through advanced data analytics. For instance, AI-

powered systems are being developed to actively manage pests via smart pest-deterring technologies, 

which reduce the need for chemical inputs and enhance environmental sustainability (Sanjeevi et al., 

2020). Automated drones with cameras and sensors offer 24/7 aerial surveillance, monitoring crop health 

continuously and detecting issues related to pests, diseases, or irrigation inefficiencies. AI systems can 

analyse vast amounts of minute-by-minute data from growing fields, alerting farmers about impending 

challenges, such as pest infestations, adverse weather conditions, or irrigation problems (Dhanaraju et 

al., 2022). The agricultural sector generates massive datasets, often in the exabyte range, and AI systems 

are precious for analysing these multivariate datasets. By learning deeper patterns within the data, AI can 

generate highly accurate predictions and recommendations that inform farming strategies, enabling more 

precise decision-making and reducing operational risks (Boursianis et al., 2022).In the context of real-

time innovations, food producers are increasingly integrating AI to adjust conditions such as irrigation 

timing and fertiliser application based on real-time weather forecasts, time of day, and plant behaviour.  

This approach, known as precision agriculture, aims to maximise crop yields by aligning farming practices 

with real-time environmental and biological signals, optimising nutrient creation and overall productivity 

(Sanjeevi et al., 2020). AI, combined with quantum computing and distributed data collection via large-

scale sensor networks, is driving the development of ultra-modern or "smart" farming systems. Once fully 

operational, these systems will even facilitate blockchain-based growing and tracking of food, ensuring 

transparency and traceability across the agricultural supply chain. However, despite the rapid 

advancements in AI and IoT-driven technologies, the transition to smart farming is gradual. Farmers are 

selectively implementing these technologies, beginning with automated wagering systems and camera-

driven pest detection on portions of their fields (Dhanaraju et al., 2022). The full-scale adoption of AI-

based systems in agriculture will require significant investment in infrastructure and the development of 

human capabilities to manage and operate these complex technologies. Thus, while the potential of AI 

in farming is immense, the transition will take time as the necessary readiness in infrastructure and farmer 

expertise is achieved. Table 1 summarises the growing adoption of AI in U.S. agriculture, where AI-driven 

technologies are transforming farming practices, optimising resource use, improving pest control, and 

ensuring transparency in the agricultural supply chain. 

Table 1: The growing adoption of AI in U.S. agriculture 

AI Application Functionality Examples in the United States 

Smart and 

Automatic 

Irrigation 

AI analyses real-time data on 

weather, soil moisture, and crop 

needs to optimise water use, 

ensuring precise and efficient 

irrigation practices. 

In California, vineyards use AI-powered 

irrigation systems to manage water 

distribution based on soil moisture levels and 

weather conditions, optimising water usage 

(Boursianis et al., 2022). 

Pest and 

Vegetation 

Control 

AI-driven systems monitor and 

manage pests through innovative 

pest-deterring technologies, 

reducing chemical inputs like 

pesticides. 

In Florida, citrus farms employ AI systems for 

pest detection, actively reducing pesticide use 

and enhancing environmental sustainability 

by managing infestations without chemicals 

(Sanjeevi et al., 2020). 

Automated 

Drone 

Surveillance 

AI-powered drones with cameras 

and sensors provide 24/7 aerial 

surveillance, continuously 

Midwestern farms use AI-driven drones to 

monitor corn fields, detecting diseases and 
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monitoring crop health and 

identifying issues like pests. 

irrigation inefficiencies through real-time 

aerial surveillance (Dhanaraju et al., 2022). 

Predictive 

Analytics for 

Farming 

AI systems analyse vast datasets to 

provide predictions on crop 

growth, yield forecasts, pest risks, 

and irrigation requirements based 

on real-time data. 

In Iowa, AI-powered platforms are used for 

predictive crop yield analysis, enabling 

farmers to make data-driven decisions about 

planting and harvesting to maximise 

productivity (Boursianis et al., 2022). 

Precision 

Agriculture 

AI adjusts farming operations in 

real-time, optimising fertiliser 

application, irrigation, and other 

inputs based on environmental 

data and plant behaviour. 

Farmers in Kansas use AI systems to 

synchronise irrigation and fertilisation 

schedules with real-time weather and crop 

data, ensuring optimal nutrient delivery and 

increased crop yields (Sanjeevi et al., 2020). 

AI for 

Resource 

Allocation 

AI tracks and allocates resources 

like water, fertiliser, and labour 

based on real-time needs and 

environmental conditions, reducing 

waste and enhancing efficiency. 

Large farms in Nebraska use AI-based 

resource allocation systems to distribute 

water and fertilisers only where needed, 

significantly reducing waste and improving 

resource management (Boursianis et al., 

2022). 

Blockchain for 

Food 

Traceability 

AI integrated with blockchain 

ensures transparency and 

traceability of food production, 

enabling end-to-end tracking from 

farm to table. 

In Oregon, farms are experimenting with AI 

and blockchain to track the entire lifecycle of 

organic produce, from planting to consumer 

purchase, ensuring transparency and food 

safety (Sanjeevi et al., 2020). 

AI in 

Predictive 

Maintenance 

AI systems monitor equipment 

performance in real time and 

predict maintenance needs, 

preventing equipment failures and 

reducing downtime. 

AI-driven predictive maintenance tools are 

used in large-scale farming operations in 

Texas, helping monitor and maintain tractors 

and irrigation systems and reducing 

equipment failures (Dhanaraju et al., 2022). 

AI and 

Quantum 

Computing in 

Farming 

Advanced AI combined with 

quantum computing processes 

large-scale datasets to optimise 

every aspect of farming, from 

planting schedules to supply chain 

management. 

Emerging use in large agricultural operations 

in California, where AI and quantum 

computing are used to forecast optimal 

planting and harvesting schedules for various 

crops based on weather and soil data 

(Boursianis et al., 2022). 

 

Automation Technologies in Agriculture 

Automation technologies such as robots, drones, and AI are already reshaping the agricultural sector. 

Innovations are actively being developed to provide end-to-end solutions encompassing the full range 

of applications in Agriculture 4.0 (De Cremer & Kasparov, 2021). For instance, systems controlling virtual 

fence farms are loaded onto mobile vehicles in Australia, while research farms test self-driving tractors 

and other autonomous vehicles. Similarly, a 3D-automated field scanner in Japan utilising LIDAR and 

depth-sensing cameras has been developed to capture physically based imagery and data for agricultural 

applications (Tschang & Almirall, 2021). These innovations highlight how automation is transforming the 

landscape of modern agriculture. Over the past four decades, labour efficiency in most high-income 

countries has doubled due to mechanisation. However, automation is expected not to replace human 

intelligence but to augment it, particularly in the agricultural sector (Hassani et al., 2020). Automation 

in agriculture tends to be labour-intensive, as skilled workers are required to design, use, finance, and 

maintain the technology and manage and interpret the data it generates. Consequently, automation 

should expand the pool of technically competent workers by making their work more engaging and 

valuable. Machine operators will still be necessary to oversee the operations of automated machines, 

and these roles may require additional duties and advanced technological skills (Tschang & Almirall, 

2021). This shift in labour requirements opens up new opportunities for the agricultural sector as it adapts 

to meet the demands of a more technologically sophisticated environment. The debate surrounding 

replacing traditional labour with automation in agriculture thus becomes somewhat moot. Instead, the 
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focus has shifted towards redefining and expanding the role of agriculturists within this evolving labour 

paradigm (De Cremer & Kasparov, 2021). While advancing rapidly, automation is not intended to 

replace traditional farming practices but to work with them, creating a new agronomic and market 

function that integrates human expertise with technological advancements. 

Current Trends and Innovations 

The technological revolution in agriculture is driving a transformation in farming operations that rivals 

the changes seen during World War II. Advances such as drone technology, robotic systems, and artificial 

intelligence (AI) are increasingly used to assist in crop and livestock management (Baur & Iles, 2023). 

Adopting AI applications, called smart farming, precision agriculture, or climate-smart farming, enables 

U.S. farmers to enhance their operations while automating routine and labour-intensive tasks. Many of 

the jobs traditionally performed by human workers, particularly those deemed uncomfortable or 

monotonous, are being displaced by automation, and it is unlikely that these jobs will return unless 

farming becomes highly localised or the cost of human labour drops significantly (Alston & Pardey, 2020). 

The shift toward smart farming is reshaping how farms operate and is expected to contribute to 

agricultural businesses' consolidation and financial viability. As the agricultural sector evolves, the demand 

for skilled professionals will increase. Research indicates a growing need for agricultural engineers, 

computer scientists, data analysts, and other specialists capable of operating and managing sophisticated 

systems increasingly deployed on farms (Dayıoğlu & Turker, 2021). Integrating green technologies in 

agriculture also necessitates new skills, further broadening the scope of expertise required in the sector 

(Hemathilake & Gunathilake, 2022). 

Drone technology has been part of precision agriculture for more than 25 years. In the mid-1990s, it was 

initially used for experimental applications like crop spraying and frost prevention. Today, drones are 

invaluable in monitoring large tracts of land, inspecting crops through high-resolution photography, 

creating multispectral images, counting mature fruits, and even spraying pesticides in areas that are 

difficult or dangerous for humans to reach (Baur & Iles, 2023). Predictive algorithms enable personalised 

care for crops, such as pruning and pest control, by leveraging real-time data from drones equipped with 

air and ground sensors. Like a two-spade grape and drone system, these drones can wirelessly charge and 

precisely navigate vineyards while in flight. They cover extensive areas efficiently and enhance decision-

making through data-driven insights. This advanced technology exemplifies the next generation of 

automated, AI-driven agriculture, creating more sustainable and productive farming practices (Dayıoğlu 

& Turker, 2021). Table 2 highlights the technologies driving the transformation in U.S. agriculture, 

showing how AI, drones, and robotics are reshaping farm operations, optimising efficiency, and 

contributing to sustainability. 
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Table 2: Technologies Driving the Transformation in U.S. Agriculture 

Technology Functionality Examples in the United States 

Drone 

Technology 

Monitoring large tracts of 

land, high-resolution crop 

inspections, multispectral 

imaging, fruit counting, and 

pesticide spraying. 

Drones are used for precision spraying in Californian 

vineyards, offering targeted pesticide application in 

hard-to-reach areas, and monitoring vast fields for 

crop health via multispectral imaging (Baur & Iles, 

2023). 

Robotic 

Systems 

Automating routine tasks 

such as planting, weeding, 

harvesting, and livestock 

management. 

Robotic fruit pickers in Florida citrus farms automate 

harvesting, reducing labour costs and improving 

efficiency in time-sensitive crops (Alston & Pardey, 

2020). 

Artificial 

Intelligence 

(AI) 

AI-based systems use 

predictive algorithms for 

personalised crop care, 

including pruning, pest 

control, irrigation 

scheduling, and yield 

forecasting. 

AI is deployed in Midwestern farms for real-time 

data analysis and personalised irrigation schedules, 

leveraging predictive models to optimise water use 

(Dayıoğlu & Turker, 2021). 

Precision 

Agriculture 

Uses data analytics to 

improve decision-making 

regarding fertiliser 

application, irrigation, pest 

control, and resource 

management. 

Farms in Iowa use precision agriculture to monitor 

soil moisture levels, applying fertiliser and water only 

where needed, minimising waste and enhancing 

sustainability (Hemathilake & Gunathilake, 2022). 

Green 

Technologies 

Incorporates sustainable 

practices and renewable 

energy sources into farming, 

reducing carbon footprints 

and improving 

environmental outcomes. 

Solar-powered irrigation systems and biofuel use in 

large-scale farms in Texas aim to reduce reliance on 

fossil fuels while maintaining crop production 

efficiency (Hemathilake & Gunathilake, 2022). 

Data 

Analytics 

Analyses large datasets from 

sensors and drones to make 

informed decisions about 

crop health, growth 

patterns, and 

environmental conditions. 

Large corn farms in Nebraska utilise data analytics 

platforms to track real-time soil health and 

environmental conditions, optimising yields through 

better resource management (Dayıoğlu & Turker, 

2021). 

Wireless 

Charging 

Drones 

Autonomous drones that 

wirelessly charge while in 

flight, enabling continuous 

operation for tasks like crop 

monitoring, pesticide 

spraying, and data 

collection. 

A two-spade grape and drone system in Napa 

Valley, California, wirelessly charges while 

monitoring vineyard health and applying pesticides 

across large areas efficiently (Baur & Iles, 2023). 

Synergies and Integration of Human Factors, AI, and Automation 

This fourth section of the Comparisons publication reviews the synergies between human factors, AI, and 

automation in agriculture. It offers recommendations for advancing safety adherence and productivity in 

modern smart farming. Earlier sections emphasised the importance of an interdisciplinary, whole-systems 

approach to development that optimises human productivity without over-intensifying any specific 

production asset, such as land, water, energy, labour, or capital (Latino et al., 2022). Additionally, we 

discussed the need for improved communication standards and design principles that align with human 

capabilities. In this section, we focus on the role of feedback loops in enhancing farm operations, 

illustrated through two case studies of user-friendly tools. While these tools experienced some issues with 

their beta versions, their industrial design was grounded in human capabilities and behaviours, whether 

AI-driven or not. This reflects a core principle in tool design—aligning technology with real-world human 



I J S E E T   P a g e  | 9 

interaction. Real farmers contributed to the development of the mapping and certification interfaces, 

ensuring that these user interfaces provided accessible and meaningful information, thus reducing the 

learning curve and effort required for operation (Perosa et al., 2023). 

One of the key outcomes of this study was the success in addressing the market-power problem by 

engaging part-time workers with mechanisation. A critical part of this engagement is ensuring that 

workers experience AI not as a rigid, authoritarian system but as a supportive tool that enhances their 

work. For example, addressing complaints and difficulties with existing heuristics for the "safe driving" of 

tractors or managing irrigation systems at night demonstrates the importance of integrating human 

feedback into the design process. This effort necessitates qualitative research, on-farm learning, and 

collaborative research with technology developers to refine these systems based on user experiences 

(Moretti et al., 2023). A noteworthy observation is the challenge of balancing automation with the need 

for skilled human labour. While automation can handle many routine tasks, there remains a critical need 

for human expertise, particularly for tasks requiring judgment and nuanced decision-making. This is 

especially true for managing farm equipment like tractors during non-standard operations, where human 

input remains essential (Moretti et al., 2023). The goal remains to enhance productivity without over-

intensifying any particular resource, including human labour. In essence, the "human-in-the-field" bridges 

all the "smart" systems that run the farm. The focus should be on how workers interact with the 

technology in specific contexts rather than overemphasising broad, generalised field plans or abstract 

automation concepts. This nuanced, human-centred approach is essential for realising the full potential 

of AI and automation in agriculture. 

Case Studies 

We now present several ethnographic case studies to show how human factors, AI, and automation 

technologies have successfully integrated in various agricultural settings. Each case study describes 

adapting this integrated approach to a unique setting. In each, we discuss the farm environment, the 

challenge, synthesis, the solution, discussion, and conclusion. In these case studies, we provide evidence 

of how AI and automation technologies are designed around how people interact and collaborate with 

those technologies, which benefit problem-solving, error-proofing, and the detection and solution of 

changes. 

These case studies are drawn from firsthand experience, interviews, focus groups, and end-user tests on 

farms throughout New York State. Farms range from 100 acres of organic produce to conventional 

million-dollar dairies with over 600 cows. The case studies have been chosen for their operational 

relevance. While most of the work is housed in New York State, it was felt that the emphasis needed to 

be on the different forms of application rather than locality. We have provided the original farm names 

and locations as a form of concreteness and to indicate their enterprises and integrations. Figure 3 shows 

examples of various innovative agricultural practices, each addressing a unique aspect of technological 

adaptation, operational optimisation, or strategic management. Below is a tabulation that breaks down 

each case, highlighting the core concept and providing an example.  
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Table 3: Various Innovative Agricultural Practices 

Agricultural Unit Concept Example 

Large Dairy: Robotic 

Milking and Lifelong 

Learning 

Integration of 

technology and 

continuous education 

A large-scale dairy farm adopts automated robotic 

milking systems, enabling real-time monitoring of 

cows’ health while requiring ongoing staff training 

for system optimisation. 

Produce Farm: 

Automating an 

Authentic Workflow 

Streamlining 

traditional practices 

through automation 

A farm that grows organic produce implements 

automation for planting and irrigation, ensuring 

authenticity by maintaining organic certifications 

and sustainable farming practices. 

Maple Syrup and Berry 

CSA: Reflexivity in 

Action 

Reflective practice in 

management and 

farming 

A Maple Syrup and Berry CSA (Community 

Supported Agriculture) adopts reflexive decision-

making processes, such as adjusting production 

methods based on customer feedback and seasonal 

variations. 

Diversified Organic 

Dairy: Right-Sizing 

Operators 

Optimising operator 

workloads for 

efficiency 

An organic dairy farm scales its machinery and 

workforce according to operational needs, 

ensuring no resource is underutilised or 

overstrained, aligning with sustainable growth 

strategies. 

CSA Unit: Responding 

to Fluctuations in 

Volume 

Flexibility in 

production based on 

demand 

A CSA farm adjusts its planting and harvesting 

schedules based on subscription fluctuations, 

ensuring balanced supply and demand while 

minimising waste during low-volume periods. 

Fruit Orchard: Vision 

for Automated 

Phenotyping 

Future outlook on 

technology for crop 

monitoring 

A fruit orchard integrates automated phenotyping 

technologies that monitor plant health and traits, 

reducing labour costs and improving the precision 

of breeding programs for quality fruit. 

Vegetable Farm Unit: 

Automating Harvest to 

Profitability 

Mechanising harvest 

operations for 

financial viability 

A vegetable farm invests in automated harvesting 

machines to reduce manual labour costs, increasing 

profitability by enabling faster, more efficient 

harvesting during peak seasons. 

Health and Safety Case 

Study: Agricultural 

Safety as Naturally 

Hybrid 

Blending human 

judgment with 

automated safety 

systems 

This is a case study on a farm that uses both 

advanced safety equipment (e.g., sensors, alarms) 

and worker training to prevent accidents in 

hazardous areas like machinery operations or 

chemical handling zones. 

Each of these examples illustrates the application of innovation, automation, and adaptive management 

in the agricultural sector. They reflect how modern farms are evolving to meet challenges like labour 

shortages, environmental sustainability, and fluctuating market demands. The strategies span improving 

worker skills, automating processes while retaining authenticity, and adapting operations to ensure both 

efficiency and profitability. 

Impacts on Sustainability and Safety Management 

The broader impacts of smart farming on sustainability and safety management are becoming increasingly 

evident as the sector focuses on improving efficiency and ease of use to encourage adopting sustainable 

practices. One of the primary benefits of incorporating AI-driven decision-making and automation into 

agriculture is reducing waste associated with poor decision-making. These technologies optimise resource 

use by providing data-driven insights, which help to minimise errors and enhance overall productivity 

(Sharma et al., 2022). Moreover, automation, informed by occupational health expertise, can improve 

environmental and human health, supporting sustainable agriculture well into the future (Karunathilake 

et al., 2023). Technological advancements in intelligent farming have far-reaching implications for 

employee health and safety. Integrating automation into farming not only aids in environmental 

sustainability but also plays a crucial role in improving safety management. Automated systems, 



I J S E E T   P a g e  | 11 

particularly those that include real-time monitoring and predictive analytics, can help identify and 

manage potential risks before they become hazardous, thus creating safer work environments (Javaid et 

al., 2022). For example, predictive maintenance planning enabled by AI can prevent equipment failures 

by addressing issues proactively, reducing the need for manual intervention in dangerous situations 

(Sharma et al., 2022). Additionally, technologies that reduce the need for digging trenches during 

equipment installation can help mitigate risks associated with such tasks, thus enhancing worker safety by 

minimising potential threats (Javaid et al., 2022).  

However, the increasing automation in smart farming is not without challenges. As machines play a larger 

role in agricultural operations, it is crucial to cultivate a culture of safety that keeps pace with 

technological advancements. By focusing on priority setting and applying systems thinking, farm 

operators can ensure that safety remains a central consideration as automation evolves (Karunathilake et 

al., 2023). This will involve improving technology and ensuring that workers are adequately trained and 

informed about the safe use of automated systems. By doing so, smart farming can continue to support 

sustainable agricultural practices while fostering a safer and more efficient working environment. For 

example, predictive maintenance planning enabled by AI can prevent equipment failures by addressing 

issues proactively, reducing the need for manual intervention in dangerous situations (Sharma et al., 

2022). Additionally, technologies that reduce the need for digging trenches during equipment installation 

can help mitigate risks associated with such tasks, thus enhancing worker safety by minimising potential 

threats (Javaid et al., 2022). However, the increasing automation in smart farming is not without 

challenges. As machines play a larger role in agricultural operations, it is crucial to cultivate a culture of 

safety that keeps pace with technological advancements. By focusing on priority setting and applying 

systems thinking, farm operators can ensure that safety remains a central consideration as automation 

evolves (Karunathilake et al., 2023). This will involve improving technology and ensuring that workers 

are adequately trained and informed about the safe use of automated systems. By doing so, smart farming 

can continue to support sustainable agricultural practices while fostering a safer and more efficient 

working environment. 

Environmental Benefits 

The environmental benefits of integrating human factors, AI, and automation in agriculture provide a 

strong ethical basis for such approaches. Technology-driven processes can potentially optimise resource 

use and significantly reduce the ecological footprint of farming operations. For instance, intelligent 

farming practices and enriched data analytics contribute to sustainability by helping farmers determine 

the optimal times to plough, the best areas to plant, and the precise amounts of water and fertiliser 

needed (Piñeiro et al., 2020). These systems analyse soil conditions, water-holding capacities, and crop 

yield forecasts, enabling the creation of economic management zones that prioritise efficient resource 

allocation. Additionally, demand forecasting tools and methods for capturing water, fertiliser, and 

pesticides aid in establishing a "balanced growth regime," ensuring that less productive areas are managed 

sustainably and minimising over-reliance on these inputs (Parr et al., 2020). By improving the precision 

of agricultural practices, smart farming reduces the excessive use of water, fertilisers, and pesticides, 

contributing to a more sustainable approach to farming. Moreover, human oversight and technological 

innovation synergy can help reduce the carbon footprint of energy-intensive farming systems. Farms near 

urban areas often benefit from improved infrastructure, such as access to electricity and water, promoting 

technology integration into farming operations (Harwood, 2020). Human involvement in overseeing 

these systems ensures that checks and balances are in place to explore business opportunities while 

focusing on environmentally sustainable practices. While the potential environmental benefits of 

combining human expertise with technological advancements are clear, qualitative research remains 

limited (Piñeiro et al., 2020). 

The international community increasingly acknowledges the necessity of adapting agricultural systems to 

support a growing population while protecting the environment. Policymaking is pivotal in facilitating 

this adaptation, as it supports socio-environmental stewardship outcomes through self-regulating 

incentives that encourage sustainable practices (Harwood, 2020). Regulatory frameworks often involve 

collaboration between environmental organisations, industry representatives, and local governments to 
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implement sustainable practices under natural resource management acts. Economic resources are 

available to farmers participating in sustainable ecological practices across various industries. 

Furthermore, Environmental Management Systems (EMS) provide voluntary alternatives prioritising 

environmental protection over efficiency, offering a framework where environmental stewardship 

becomes the primary focus (Parr et al., 2020). Ultimately, the success of sustainable agriculture lies in 

understanding and harnessing the economic, social, and collaborative benefits that can emerge within 

localised farming systems. By combining human expertise with technological innovation and sound policy 

frameworks, agriculture can transform into a more environmentally sustainable industry that supports 

food production and ecological health. 

Safety and Risk Mitigation Strategies 

While safety is often discussed in the context of smart farming, the risks associated with AI-based 

agriculture are frequently underemphasised in the design of these technologies. Despite disruptive 

innovations in the agricultural sector, human safety has not been fully integrated into the equation in 

smart farming (Nath et al., 2020). Implementing AI and automation, particularly for early risk 

identification at the neonatal care level, can help prevent human trauma and reduce operational costs 

by enabling proactive interventions. For example, smart monitoring systems with sensors like infrared 

routing can mitigate risks like fire outbreaks. Additionally, technological innovations can simplify 

compliance with product and equipment regulations, reducing the likelihood of legal issues for farmers 

(Wong et al., 2020). However, while the benefits of technological innovations are significant, potential 

pitfalls need to be addressed. One major concern is the reduced role of human operators in increasingly 

automated digital value chains, which raises safety concerns. The potential for accidents or failures is not 

eliminated simply by adopting advanced technology; these advancements highlight the need for 

thorough technology adoption and training programs. Safety in smart farming involves a two-stage 

consideration: personal safety and the reliability of the technology itself (Nath et al., 2020). Training 

programs are essential, as safety is often directly proportional to employee training. However, even 

comprehensive training cannot completely safeguard against the potential unreliability of automated 

systems, a recognised drawback of increasing automation (Wong et al., 2020). Safety legislation 

mandates that farm operators ensure all employees are adequately trained. As automation becomes more 

widespread in agriculture, the scope and depth of practical training must expand accordingly. Research 

into human factors has consistently shown the importance of fostering a robust 'safety culture' in the 

workplace, emphasising habits, recognition, and adopting safety practices as essential components. By 

combining 'safe' and 'smart' approaches to farming, it is possible to achieve significant benefits, creating 

agricultural systems that are both technologically advanced and secure for the workers operating within 

them (Nath et al., 2020). 

Conclusion and Future Directions 

Integrating human factors, AI, and automation for sustainability in agriculture has seen slow progress 

over time. It needs a push from the academic and industrial sectors of the world. Given the focus and 

discussions in the section presented, this paper attempted to highlight innovations in smart farming, 

safety, environmental management, and situations. In the synthesised EAM of smart farming, it has been 

discovered that the primary research focus is increased economic efficiency with reduced field size plus 

animal and crop yield. Interestingly, while the current discussion is centred on adapting the smart farming 

concept to local situations, the modernised agriculture section discusses the human role. Using drones as 

a visible technological extension in smart farming, it is imagined that the agricultural future will 

concurrently employ various technologies to deal with the unpredictability and variability of the future. 

The intelligent marriage of AI, farm analytics, and automation technology provides multiple 

opportunities for automatically adapting farming goals to continuous changes. The pace of advances in 

the interactive roles of humans, machines, and nature seeks that forward-thinking designs for 

sustainability are both people- and machine-centric simultaneously. Forward-thinking research on 

transformative adaptations will require bringing more cybernetic and human dimensions and 

partnerships to address emerging problems and offer alternatives. The future of smart farming will be 
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profoundly influenced by enabling policy frameworks and institutions and the educational material 

needed to ready farm managers and operators to think and act in these novel yet nested ways. 
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